Efecto de la aplicación de cáñamo en las propiedades de resistencia y resistividad de una arcilla

Autores/as

DOI:

https://doi.org/10.22335/rlct.v14i3.1650

Palabras clave:

Ingeniería Geológica, Mecánica de Suelos, Materiales de Construcción, Arcilla, Fibra Natural

Resumen

La investigación tiene el objetivo de hallar el efecto y proporción adecuada de la fibra de cáñamo de 4 cm de longitud, en las propiedades de resistencia y resistividad de una arcilla. Las propiedades investigadas incluyen la humedad óptima (wópt); el peso unitario seco máximo (γdmáx), cohesión (c); ángulo de fricción (Φ), resistencia a la compresión inconfinada (qu), y resistividad eléctrica (ρ). Los ensayos de compactación Proctor modificado (ASTM D 1557-12), corte directo consolidado no drenado (CU) para suelos cohesivos (ASTM 6528-17), resistencia a la compresión inconfinada (ASTM D2166-16) y del ensayo de los cuatro electrodos de Wenner (ASTM G57-01l), se aplicaron en tres muestras de arcilla con diferentes proporciones de fibra de cáñamo; muestra patrón, Ap, de 100 % arcilla de la ciudad de Tunja, Colombia, muestra con 0.5 % y 0.75 % de fibra de cáñamo, A0.5 %, y A0.75 %, con relación al peso seco del material. Los resultados del presente estudios indican que el porcentaje óptimo de cáñamo es 0.5 %, evidenciando disminución en las propiedades de compactación, y aumento de las propiedades de resistencia al corte, resistencia a la compresión inconfinada, y de resistividad eléctrica, sin embrago, ante mayor presencia de fibra, se presenta destrucción de la matriz arcillosa.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Luis Alberto Cáceres Cárdenas, Universidad Pedagógica y Tecnológica de Colombia

    Ingeniería Geológica. Maestría en Geotecnia.

  • Karen Inés Eslava Moreno, Universidad Pedagógica y Tecnológica de Colombia

    Ingeniería Civil. Especialización en Geotecnia Vial y Pavimentos.

  • Edwin Ricardo Álvarez Vega, Universidad Pedagógica y Tecnológica de Colombia

    Ingeniería Civil. Maestría en Geotecnia.

Referencias

Abou Diab, A., Sadek, S., Najjar, S., y Abou Daya, M. (2016). Undrained shear strength characteristics of compacted clay reinforced with natural hemp fibers. International Journal of Geotechnical Engineering, 10(3), 1-8. https://doi.org/10.1080/19386362.2015.1132122.

Abou Diab, A., Najjar, S., Sadek, S., Taha, H., Jaffal, H., y Alahmad, M. (2018). Effect of compaction method on the undrained strength of fiber-reinforced clay. Soils and Foundations, 58(2), 462-480. https://doi.org/10.1080/19386362.2015.1132122

Abu- Hassanein, Z. S., Benson, C. H., y Blotz, L. R. (1996). Electrical resistivity of compacted clays. Journal of Geotechnical Engineering, 122(5). https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)

Álvarez Vega, E. (2018). Efecto de la humedad y el peso específico seco en la resistividad eléctrica de los suelos. I Congreso Iberoamericano y XXXI Internacional en Administración de Empresas Agropecuarias. Tunja.

Ammar, A., Najjar, S., y Sadek, S. (2019). Mechanics of the Interface Interaction between Hemp Fibers and Compacted Clay. International Journal of Geomechanics, 19. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001368

Attom, M., Al-Arkhras, N., y Malkawi, A. (2009). Effect of Fibres on the Mechanical Properties of Clayey Soil. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 162(5), 277-282.

Boz, A., Sezer, A., Özdemir, T., Hizal, G., y Dolmaci, Ö. (2018). Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arab J Geosci, 122(11). https://doi.org/10.1007/s12517-018-3458

Budhu, M. (2000). Soil mechanics and foundations. Wiley.

Cai, Y., Shi, B., W.W. Ng, C., y Tang, C. (2006). Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Engineering Geology, 87, 230-240. https://doi.org/10.1016/j.enggeo.2006.07.007.

Chegenizadeh, A., y Nikraz, H. (2011). Shear Test on Reinforced Clay. Advanced Materials Research, 250-253, 3223-3227. www.scientific.net/AMR.250-253.3223

Converse, F. (1952). The Use of the Direct Shear Testing Machine in Foundation Engineering Practice. Symposium on Direct Shear Testing of Soils, ASTM, 131, págs. 75-80.

Das, B. (2011). Principles of Foundation Engineering. Cengage Learning. Inc.

Eichhorn, S., Baillie, C., Zafeiropoulos, N., Mwaikambo, L., Ansell, M., Dufresne, A., . . . Wild, P. (2001). Review: Current international research into cellulosic fibres and composites. Journal of Materials Science, 36, 2107-2131.

Estabragh, A., Ranjbari, S., y Javadi, A. (2017). Properties of Clay Soil and Soil Cement Reinforced with Polypropylene Fibers. Materials,(114), 195-205.

Fukue, M., Minato, T., Horibe, H., y Taya, N. (1999). The Microstructure of Clay Given by Resistivity Measurements. Engineering Geology, 54(1-2), 43-53.

Hunt, R. (2005). Geotechnical Engineering Investigation Handbook (2nd ed.). Taylor and Francis Group.

Instituto de Hidrología. (1999). El Macizo colombiano y su área de influencia inmediata: diagnóstico, descripción de la unidad regional y propuesta de delimitacion. IDEAM.

Lu, N., Swan Jr, R. H., y Ferguson, I. (2012). Composition, structure, and mechanical properties of hemp fiber reinforced composite with recycled high-density polyethylene matrix. Journal of Composite Materials, 46(16), 1915-1924.

Mazhoud, B., Collet, F., Pretot, S., & Lanos, C. (2017). Mechanical properties of hemp-clay and hemp stabilized clay composites. Construction and Building Materials, 155, 1126-1137. https://doi.org/10.1016/j.conbuildmat.2017.08.121.

Millogo, Y. M., Aubert, J., y Ghavami, K. (2014). Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers. Construction and Building Materials, 71-78.

Mitchell, J., y Huston, W. (1970). Causes of clay sensitivity. Journal of Soil Mechanics & Foundations Div, 95(3), 845-871.

Naik, J., y Mishra, S. (2005). Studies on Electrical Properties of Natural Fiber: HDPE Composites. Polymer-Plastics Technology and Engineering, 44(4), 687-693. https://doi.org/10.1081/PTE-200057818

Najjar, S., Sadek, S., y Taha, H. (2014). Use of Hemp Fibers in Sustainable Compacted Clay Systems. Geotechnical Special Publication, 1415-1424. https://doi.org/10.1061/9780784413272.138

Olgun, M. (2013). Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynthetics International, 20, 263-275. https://doi.org/10.1680/gein.13.00016

Peck, R. (2016). Ingeniería de Cimentaciones. Limusa.

Pozdnyakova, L. (1999). Electrical Properties of Soils. Laramie, Wyoming, United States of America: Depatment of Renewable Resources.

Prinz, H., y Strauss, R. (2006). Abriss der Ingenieurgeologie. München : Elsevier Spektrum akademischer Verlag.

Richards, L. A. (1954). Diagnosis and Improvement of Saline and Alkali Soils. United States Salinity Laboratory Staff.

Wenner, F. (1915). A Method Using Earth Resistivity. Journal of the Washington Academy of Sciences, 5(16), 561-563.

Whitlow, R. (1995). Basic Soil Mechanics, Third Edition. Essex: Longman Scientific and Technical.

Widianti, A., y Diana, W. H. (2020). Direct Shear Strength of Clay Reinforced with Coir. UKaRsT, 4(2), 151–162.

Publicado

2022-10-10 — Actualizado el 2022-12-10

Versiones

Número

Sección

Artículos de investigación / Artículos Originales

Cómo citar

Efecto de la aplicación de cáñamo en las propiedades de resistencia y resistividad de una arcilla. (2022). Revista Logos Ciencia & Tecnología, 14(3), 8-23. https://doi.org/10.22335/rlct.v14i3.1650 (Original work published 2022)