Esta é uma versão desatualizada publicada em 2022-12-08. Leia a versão mais recente.

Detecção de espécies de madeira a partir de sensores de matriz química usando regularização L1 e modelos de mistura gaussiana

Autores

DOI:

https://doi.org/10.22335/rlct.v15i1.1642

Palavras-chave:

aprendizado estatístico, redução de dimensionalidade, modelos de mistura, narizes eletrônicos, indústria madeireira

Resumo

A identificação das espécies da madeira ajuda a combater o tráfico ilegal de madeira. No presente trabalho, é apresentado um método que visa detectar espécies de madeira de peças previamente cortadas e armazenadas através da interação dos compostos voláteis que elas
emanam com um conjunto de sensores químicos (nariz eletrônico). O dispositivo processa a resposta da matriz de sensores químicos usando regularização linear e métodos probabilísticos de aprendizado de máquina tentando se assemelhar aos sistemas biométricos atuais. Em particular, este método inclui uma etapa de estimação de parâmetros heurísticos nos sinais fornecidos pela matriz de sensores, seguida de uma etapa de seleção de variáveis através da regularização L1, para finalmente usar modelos de mistura gaussiana [GMMs] para o processo de modelagem probabilística. Como resultado, obtém-se um desempenho (medido pelo EER) de 17,5% para a detecção de quatro espécies de madeira; e, para o caso particular de Sapán, atinge-se uma EER de 12 %. Em conclusão, esta abordagem biométrica apresenta bons resultados face a trabalhos anteriores, tendo em conta que no presente trabalho as experiências são realizadas em condições mais próximas da realidade.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Naren Arley Mantilla Ramírez, Universidad Industrial de Santander

    Ingeniería Electrónica. Maestría en Ingeniería de Telecomunicaciones.

  • Iván Darío Porras Gómez, Universidad Industrial de Santander

    Ingeniero Agrícola. Es. Alta Gerencia, Ms Gestión y Politica Pública.

  • Alexander Sepúlveda Sepúlveda, Universidad Indistrial de Santander

    Ingeniero Electrónico. Maestría en Automatización Industrial. Doctorado en Ingeniería – Automática.

Referências

Agritix. (2016). Xylorix: Macroscopic wood identification system. https://www.xylorix.com

Baietto, M., Pozzi, L., Wilson, A., y Bassi, D. (2013). Evaluation of a portable MOS electronic nose to detect root rots in shade tree species. Computers and Electronics Agriculture, 96, 117-125. https://doi.org/10.1016/j.compag.2013.05.002

Baietto, M., Wilson, A., Bassi, D., y Ferrini, F. (2010). Evaluation of three electronic noses for detecting incipient wood decay. Sensors, 10(2), 1062-1092. https://doi.org/10.3390/s100201062

Cabral, E., Simas, R., Santos, V., Queiroga, C., Da Cunha, V., De Sá, G., Daroda, R., y Eberlin, M. (2012). Wood typification by Venturi easy ambient sonic spray ionization mass spectrometry: The case of the endangered Mahogany tree. Journal of Mass Spectrometry, 47(1), 1-6. https://pubmed.ncbi.nlm.nih.gov/22282083/

Carmel, L., Levy S., Lancet, D., y Harel, D. (2003). A feature extraction method for chemical sensors in electronic noses. Sensors and Actuators B: Chemical, 93(1), 67-76. https://doi.org/10.1016/S0925-4005(03)00247-8

Chawla, N. V., Bowyer, K. W., Hall, L. O., y Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. https://www.jair.org/index.php/jair/article/view/10302

Cordeiro, J., Li, R., Takahashi, E., Rehder, G., Ceccantini, G., y Gruber, J. (2016). Wood identification by a portable low-cost polymer-based electronic nose. RSC Advance, 6(111). https://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra22246c

Corporación Autónoma Regional de Santander [CAS] (2016). En Santander hay 13 especies de flora y 12 de fauna priorizados para su conservación. http://cas.gov.co/index.php/sala-de-prensa/453-ensantander-hay-13-especies-de-flora-y-12-de-faunapriorizados-para-su-conservacion.html

Fedele, R., Galbally, I., Porter, N., y Weeks, I. (2007). Biogenic VOC emissions from fresh leaf mulch and wood chips of Grevillea robusta (Australian Silky Oak). Atmospheric Environment, 41(38), 8736-8746. https://doi.org/10.1016/j.atmosenv.2007.07.037

Forest Research Institute Malasy y University Tunku Abdul Rahman [FRIM&UTAR] (2018). My wood: Mobile Wood identification for 100 malaysian timbers. http://mywoodid.frim.gov.my

Friedman, J., Hastie, T., y Tibshirani, R. (2009). The Elements of Statistical Learning. https://link.springer.com/book/10.1007/978-0-387-84858-7

Ghasemi-Varnamkhasti, M., Razdari, A., Yoosefian, S., Izadi, Z., y Rabiei, G. (2019). Selection of an optimized metal oxide semiconductor sensor (MOS) array for freshness characterization of strawberry in polymer packages using response surface method (RSM). Postharvest Biology and Technology, 151, 53-60. https://doi.org/10.1016/j.postharvbio.2019.01.016

James, G., Witten, D., Hastie, T., y Tibshirani, R. (2013). An introduction to statistical learning. Springer. https://link.springer.com/book/10.1007/978-1-4614-7138-7

Kalaw, J., y Sevilla, F. (2018). Discrimination of wood species based on a carbon nanotube/polymer composite chemiresistor array. Holzforschung, 72(3), 215-223. https://www.degruyter.com/document/doi/10.1515/hf-2017-0097/html

Mantilla, N., Ruiz, L., Ortega, H., Paja, M., y Sepúlveda, A. (2020). A low cost electronic nose with a GMM-UBM approach for wood species verification. ICPRAM-2020, 333-341. https://scholar.google.com/citations?view_op=view_citation&hl=es&user=Deodh2sAAAAJ&citation_for_view=Deodh2sAAAAJ:d1gkVwhDpl0C

Mantilla, N., Ruiz, L., Ortega, H., y Sepúlveda, A. (2021). Identificación de especies de maderas locales mediante el uso de nariz electrónica y aprendizaje automático: Un experimento preliminar. INGE CUC, 17, 188-200. https://revistascientificas.cuc.edu.co/ingecuc/article/view/2570

Porras, D., Sarria, M., y Sepúlveda, A. (2020). Speaker Verification system based on articulatory information from ultrasound recordings. DYNA, 87(213). http://www.scielo.org.co/scielo.php?pid=S0012-73532020000200009&script=sci_arttext&tlng=en

Reynolds, D., Quatieri, T., y Dunn, R. (2000). Speaker verification using adapted gaussian mixture models. Digital Signal Processing, 10(1-3), 19-41. https://doi.org/10.1006/dspr.1999.0361

Ruiz-Jiménez, L. F. (2018). Detección de los insectos de la subfamilia Triatominae basado en narices electrónicas. Technical report, Universidad Industrial de Santander.

Urrego, D., Pérez, M., Polanco, C. y Pérez, M. (2012). Control del aprovechamiento ilegal de flora a partir de la anatomía de siete especies maderables en estado de amenaza. Aportes a la política nacional ambiental. Revista Criminalidad, 54(1), 259-281. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-31082012000100004

Wheeler, E. A., y Baas, P. (1998). Wood identification-a review. IAWA journal- International Association of Wood Anatomists, 19(3), 241-264. https://doi.org/10.1163/22941932-90001528

Wilson, A., Lester, D., y Oberle, C. (2005). Application of conductive polymer analysis for wood and Woody plant identifications. For. Ecol. Manage., 209(3), 207-224. https://doi.org/10.1016/j.foreco.2005.01.030

Wilson, A. (2012). Application of a conductive polymer electronic-nose device to identify aged woody samples. En S. Yurish, I. Chilibon, V. Carvalho, S. Gervais-Ducouret (eds.). Proceedings of The 3rd International IARIA Conference on Sensor Device Technologies and Applications, Rome, Italy. Xpert Publishing Services: Wilmington, DE. (pp. 77-82). https://www.fs.usda.gov/research/treesearch/45153

Wilson, A. (2013). Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry. Sensors, 13, 2295-2348. https://www.mdpi.com/1424-8220/13/2/2295

World Wildlife Fund [WWF] (2017). 15 especies colombianas de árboles amenazados. http://www.wwf.org.co/?uNewsID=299073

Yan, J., Guo, X., Duan, S., Jia, P., Wang, L., Peng, C., y Zhang, S. (2015). Electronic nose feature extraction methods: A review. Sensors, 15(11), 27804-27831. https://doi.org/10.3390/s151127804

Yu, M., Liu, K., Zhou, L., Zhao, L., y Liu, S. (2015). Testing three proposed DNA barcodes for the Wood identification of Dalbergia odorifera T. Chen and Dalbergia tonkinensis Prain. Holzforschung, 70(2), 127-136. https://doi.org/10.1515/hf-2014-0234

Zhao, P., y Jun, C. (2016). Wood species identification using spectral reflectance feature and optimal illumination radian design. Journal of Forestry Research, 27, 219-224. https://doi.org/10.1007/s11676-015-0171-4

Publicado

2022-12-08

Versões

Edição

Seção

Artigos de pesquisa / Artigos Originais

Como Citar

Detecção de espécies de madeira a partir de sensores de matriz química usando regularização L1 e modelos de mistura gaussiana. (2022). Revista Logos Ciencia & Tecnología, 15(1), 8-18. https://doi.org/10.22335/rlct.v15i1.1642