Impacto da implementação da irrigação com energia solar nas culturas de limões

Autores

DOI:

https://doi.org/10.22335/rlct.v14i2.1571

Palavras-chave:

sistema de irrigação, energia solar, eficiência global, evapotranspiração, limão

Resumo

É apresentado o dimensionamento de um sistema de irrigação aplicado a uma cultura de limão, utilizando energia solar. Este sistema de irrigação obedeceu a valores de evapotranspiração potencial (ETP) de 4,31 mm/dia e Utilização Consuntiva (UC) de 1,85 mm/ha/dia, cuja matriz experimental é composta por três filas de 57 árvores com um requisito de 64,91 litros/árvore/dia, utilizando gotejadores de uma descarga de 4 litros/hora. O estudo mostra a um nível altamente significativo que a humidade está concentrada a uma profundidade de 15 cm, influenciada pelas características físicas arenosas do solo. Para as necessidades de água de rega, dimensiona-se um sistema solar, obtendose uma disposição de dez painéis em série e dois em paralelo para um total de vinte juntos, um inversor com uma capacidade de 5,0 kWp, para alimentar uma bomba de 2 HP e uma casa, com consumo médio de 1,5 kWp, ligada a uma rede de baixa tensão de 220V. A eficiência global do sistema foi registada na gama de 10 e 14% e a potência máxima do sistema fotovoltaico foi atingida entre 10 e 14 horas com 84% da capacidade total instalada (5,2 kWp).

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Agustín Valverde Granja, Universidad de Ibagué

    Ingeniero Mecánico. Maestría en Eficiencia energética. Doctor en Ingeniería Mecánica.

  • Giovanni Andrés Vargas Galván, Universidad de Ibagué

    Ingeniero mecánico con especialización en Pedagogía y Ética. Maestría en Gestión Industrial.

  • Mauricio García Arboleda, Agrosavia, Florencia

    Ingeniero Agrónomo. Maestría en Desarrollo Sustentable. Doctorado en Agroecología.

  • John Edisson Díaz Figueroa, Policía Nacional de Colombia

    Ingeniero Aeronáutico. Especialista en servicio de Policía.

Referências

Abella, M. A., & Chenlo Romero, F. (s.f.). Sistemas de Bombeo Fotovoltaico. [Trabajo de grado de Maestría, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas]. CIEMAT.

Adaramola, M. S., & Vågnes, E. E. (2015). Preliminary Assessment of a Small-Scale Rooftop PV-Grid Tied in Norwegian Climatic Conditions. Energy Conversion and Management, (90), 458-465. https://doi.org/10.1016/j.enconman.2014.11.028

Aliyua, M., Hassana, G., Saida, S. A., Siddiquic, M. U., Alawamid, A. T., & Elamind, I. M. (2018). A Review of solar-Powered Water Pumping Systems. Renewable and Sustainable Energy Reviews, (87), 61-76. https://doi.org/10.1016/j.rser.2018.02.010

Allen, R., Pereira, L., & Raes, D. (2006). Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos. FAO.

Ark Kumar, K., Sundareswaran, K., & Venkateswaran, P. (2014). Performance Study on a Grid Connected 20 kWp Solar Photovoltaic Installation in an Industry in Tiruchirappalli (India). Energy for Sustainable Development, (23), 294-304. https://doi.org/10.1016/j.esd.2014.10.002

Ayompe, L., Duffy, A., McCormack, S., & Conlon, M. (2011). Measured Performance of a 1.72 kW Rooftop Grid Connected Photovoltaic System in Ireland. Energy Conversion and Management, 52(2), 816-825. https://doi.org/10.1016/j.enconman.2010.08.007

Barbosa Pinzón, A. (2010). Agua potable para la humanidad y su conflicto mundial un asunto de la alta gerencia. [Trabajo de grado de Especialización, Universidad Militar Nueva Granada]. RI UMNG. https://repository.unimilitar.edu.co/handle/10654/3702

Barlow, R., McNeils, B., & Derrick, A. (1991). Status and Experience of Solar PV Pumping in Developing Countries. En A. Luque, G. Sala, W. Palz, G. Santos & P. Helm (Eds.), Tenth E.C. Photovoltaic Solar Energy Conference (pp. 1143-1146). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3622-8_292

Bedoya, M., & Ángeles, V. (2017). Comparación de métodos para estimar pérdidas localizadas en riego por goteo. Tecnologías y Ciencias del Agua, 3(4), 117-125. http://dx.doi.org/10.24850/j-tyca-2017-04-07

Benlarbi, K., Mokrani, L., & Nait-Said, M. S. (2004). A Fuzzy Global Efficiency Optimization of a Photovoltaic Water Pumping System. Solar Energy, 77(2), 203-216. https://doi.org/10.1016/j.solener.2004.03.025

Burger, B., & Rüther, R. (2006). Inverter Sizing of Grid-Connected Photovoltaic Systems in the Light of Local Solar Resource Distribution Characteristics and Temperature. Solar Energy, 80(1), 32-45. https://doi.org/10.1016/j.solener.2005.08.012

Caamaño Martín, E. (1998). Edificios fotovoltaicos conectados a la red eléctrica: Caracterización y análisis. [Tesis doctoral, Universidad Politécnica de Madrid]. Archivo Digital UPM. http://oa.upm.es/1322/1/ESTEFANIA_CAAMANO_MARTIN.pdf

Campana, P. E., Li, H., & Yan, J. (2013). Dynamic Modelling of a PV Pumping System with Special Consideration on Water Demand. Applied Energy, (112), 635-645. https://doi.org/10.1016/j.apenergy.2012.12.073

Campana, P. E., Li, H., Zhang, J., Zhang, R., Liu, J., & Yan, J. (2015). Economic Optimization of Photovoltaic Water Pumping Systems for Irrigation. Energy Conversion and Management, (95), 32-41. https://doi.org/10.1016/j.enconman.2015.01.066

Carrelo, I. B., Hogan Almeida, R., Narvarte, L., Martinez-Moreno, F., & Carrasco, L. M. (2020). Comparative Analysis of the Economic Feasibility of Five Large-power Photovoltaic Irrigation Systems in the Mediterranean Region. Renewable Energy, (14). 2671-2682. https://doi.org/10.1016/j.renene.2019.08.030

Carroquino, J., Dufo-López, R., & Bernal-Agustín, J. L. (2015). Sizing of off-grid Renewable Energy Systems for Drip Irrigation in Mediterranean Crops. Renewable Energy, (76), 566-574. https://doi.org/10.1016/j.renene.2014.11.069

Díez-Mediavilla, Alonso-Tristán, C., Rodríguez-Amigo, M., García-Calderón, T., & Dieste-Velasco, M. (2012). Performance Analysis of PV Plants: Optimization for Improving Profitability. Energy Conversion and Management, 54(1), 17-23. https://doi.org/10.1016/j.enconman.2011.09.013

Doll, C., & Pachauri, S. (2010). Estimating Rural Populations without Access to Electricity in Developing Countries through Night-time Light Satellite Imagery. Energy Policy, 38(10), 5661-5670. https://doi.org/10.1016/j.enpol.2010.05.014

E.U. (s.f.). Experimentation of Pv water pumps in view of their optimization. Final report.

International Energy Agency (2001). Technical Brochure N° 152 Solar Pumping in India. Caddet, Renewable Energy. https://www.yumpu.com/en/document/read/39509094/solar-pumping-in-india-caddet-renewable-energy

European Commission. (2010). Photovoltaics in 2010. European Commission Directorate-General for Energy. Fronius. (2020). Productos y soluciones. Fronius. https://www.fronius.com/es/latin-america

Gao, X., Liu, J., Zhang, J., Yan, J., Bao, S., Xu, H., & Tao, Q. (2013). Feasibility Evaluation of Solar Photovoltaic Pumping Irrigation System Based on Analysis of Dynamic Variation of groundwater Table. Applied Energy, (105), 182-193. https://doi.org/10.1016/j.apenergy.2012.11.074

Gualteros, S., & Rousse, D. R. (2021). Solar Water Pumping Systems: A Tool to Assist in Sizing and Optimization. Solar Energy, (225), 382-398. https://doi-org.ezproxy.unibague.edu.co/10.1016/j.solener.2021.06.053

Hamidat, A., & Benyoucef, B. (2009). Systematic Procedures for Sizing Photovoltaic Pumping System, Using Water Tank Storage. Energy Policy, (37), 1489-1501. https://doi.org/10.1016/j.enpol.2008.12.014

Instituto Colombiano de Normas Técnicas y Certificación (1998). NTC 2050. Código Eléctrico Colombiano. ICONTEC. https://www.icontec.org/lanzamiento-codigo-electrico-colombiano-ntc-2050/

Instituto de Hidrología, Meteorología y Estudios Ambientales (2020). Tiempo y clima. IDEAM. http://www.ideam.gov.co/web/tiempo-y-clima

INTI. (2017). Conozca nuestros productos. INTI. https://intipv.com/es/

Islam, S., Woyte, A., Belmans, R., & Nijs, J. (2003). Undersizing the Inverter for Grid-connection - Where is the optimum? En R. Hezel (Coord.). The 18th Symposium Photovoltaische Solarenergie, (pp. 414-419). Ostbayerisches Technologie-Transfer-Institut.

Jaramillo Robledo, A. (2006). Evapotranspiración de referencia en la región Andina de Colombia. Cenicafé, 57(4), 288-298.

López, J., Hernández Abreu, J., Pérez Regalado, A., & González Hernández, J. (1992). Riego localizado. MAPA-IRYDA.

López-Luque, R., Martínez, J., Reca, J., & Ruiz, R. (2017). Análisis de viabilidad y gestión del riego en invernaderos mediterráneos con energía solar fotovoltaica. Ribagua, 1-10. https://doi.org/10.1080/23863781.2017.1332806

López-Luque, R., Reca, J., & Martínez, J. (2015). Optimal Design of a standalone Direct Pumping Photovoltaic System for Deficit Irrigation of Olive Orchards. Applied Energy, (149), 13-23. https://doi.org/10.1016/j.apenergy.2015.03.107

Macêdo, W. N., & Zilles, R. (2007). Operational Results of Grid‐connected Photovoltaic System with Different Inverter’s Sizing Factors (ISF). Progress in Photovoltaics: Research and Applications, (15), 337-352. https://doi.org/10.1002/pip.740

Martínez-Gimeno, M. A., Bonet, L., Provenzano, G., Badal, A., Intrigliolo, D. S., & Ballester, C. (2018). Assessment of Yield and Water Productivity of Clementine Trees under Surface and Subsurface Drip Irrigation. Agricultural Water Management, (206), 209-216. https://doi.org/10.1016/j.agwat.2018.05.011.

Mérida, A., Fernández García, I., Camacho Poyato, E., Montesinos Barrios, P., & Rodríguez-Díaz, J. A. (2018). Coupling Irrigation Scheduling with Solar Energy Production in a Smart irrigation Management System. Journal of Cleaner Production, (175), 670-682. https://doi.org/10.1016/j.jclepro.2017.12.093

Mpholo, M., Nchaba, T., & Monese, M. (2015). Yield and Performance Analysis of the First Grid-connected Solar Farm at Moshoeshoe I International Airport, Lesotho. Renewable Energy, (81), 845-852. https://doi.org/10.1016/j.renene.2015.04.001

Natural Resources Canada. (21 de febrero de 2019). RETScreen. Natural Resources Canada. https://www.nrcan.gc.ca/energy/retscreen/7465

Okakwu, I., Alayande, A., Akinyele, D., Olabode, O., & Akinyemi, J. (2022). Effects of Total System Head and Solar Radiation on the Techno-economics of PV Groundwater Pumping irrigation System for Sustainable Agricultural Production. Scientific African, (16), 1-15. https://doi.org/10.1016/j.sciaf.2022.e01118

Padmavathi, K., & Arul Daniel, S. (2013). Performance Analysis of a 3 MWp Grid Connected Solar Photovoltaic Power Plant in India. Energy for Sustainable Development, 17(6), 615-625. https://doi.org/10.1016/j.esd.2013.09.002

Pedrollo (2020). 4SR Electrobombas sumergidas de 4”. Pedrollo. https://www.pedrollo.com/es/4sr-electrobombas-sumergidas-de-4/150

Pizarro, F. (1996). Riegos localizados de alta frecuencia. Mundi – Prensa.

Posadillo, R., & López-Luque, R. (2008). A Sizing Method for Stand-alone PV Installations with Variable Demand. Renewable Energy, 33(5), 1049-1055. https://doi.org/10.1016/j.renene.2007.06.003

Programa de las Naciones Unidas para el Medio Ambiente (2003). Informe Distribución del Agua de la Tierra. PNUMA. https://www.un.org/esa/sustdev/sdissues/water/WWDR-spanish-129556s.pdf

Qoaider, L., & Steinbrecht, D. (2010). Photovoltaic Systems: A Cost Competitive Option to Supply Energy to off-grid Agricultural Communities in Arid Regions. Applied Energy, 87(2), 427-435. https://doi.org/10.1016/j.apenergy.2009.06.012

Rabiul Islam, M. S., Pejush, & Kumar Ghosh, S. (2017). Prospect and Advancement of Solar Irrigation in Bangladesh: A Review. Energy Reviews, (77), 406-422. https://doi.org/10.1016/j.rser.2017.04.052

Reca, J., García-Manzano, A., & Martínez, J. (2015). Optimal Pumping Scheduling Model Considering Reservoir Evaporation. Agricultural Water Management, (148), 250-257. https://doi.org/10.1016/j.agwat.2014.10.008

Reca, J., Torrente, C., López-Luque, R., & Martínez, J. (2016). Feasibility Analysis of a Standalone Direct Pumping Photovoltaic System for Irrigation in Mediterranean Greenhouses. Renewable Energy, (85), 1143-1154. https://doi.org/10.1016/j.renene.2015.07.056

Simens Solar Industries. (1996). Photovoltaic Techonogy and systems desing, training manual. Simens Solar Industries.

Tan, C., Min, Wang, J., Geng, S., Niu, D., & Tan, Z. (2022). Feasibility Study on the Construction of Multi-energy Complementary Systems in Rural Areas—Eastern, Central, and Western Parts of China are Taken as Examples. Energy, 249(15), 1-21. https://doi.org/10.1016/j.energy.2022.123571

The American Society of Mechanical Engineers (2001). Philippines, Villages to Receive Electricity for the First Time. ASME https://www.modernpowersystems.com/news/newsphilippine-villages-to-receive-electricity-for-first-time

Unidad de Planeación Minero Energética (s.f.). Mapas de Brillo Solar. UPME. http://atlas.ideam.gov.co/visorAtlasRadiacion.html

Valverde Granja, A. (2017). Implementação de uma rede experimental de geração distribuída (GD) com energia solar: estudo de caso da Universidade de Ibagué - Colômbia. [Tesis doctoral, Universidade Estadual Paulista Julio de Mesquita]. Repositorio Institucional UNESP. https://repositorio.unesp.br/handle/11449/151001

Vargas Galván, G. A., Gil-Baena, S. A., Díaz-Figueroa, J. E., & Otálora-Dueñas, L. M. (2019). Aprovechamiento de la energía solar para el Área Académica de la Escuela de Aviación Policial mediante un sistema fotovoltaico con conexión a red. Revista Logos Ciencia & Tecnología, 11(2), 47-59. https://doi.org/10.22335/rlct.v11i2.446

Yahyaoui, I., Chaabene, M., & Tadeo, F. (2013). An Algorithm for Sizing Photovoltaic Pumping Systems for Tomatoes Irrigation. M. Sánz, I. Colak, & F. Kurokawa (Coords.), International Conference on Renewable Energy Research and Applications (ICRERA), (pp. 1089-1095). https://doi.org/10.1109/ICRERA.2013.6749915

Yahyaoui, I., Sallem, S., Kamoun, M., & Tadeo, F. (2014). A Proposal for off-grid Photovoltaic Systems with Non-controllable Loads Using Fuzzy Logic. Energy Convers Manage, (78), 835-842. https://doi.org/10.1016/j.enconman.2013.07.091

Yahyaoui, I., Yahyaoui, A., Chaabene, M., & Tadeo, F. (2016). Energy Management for a Stand-alone Photovoltaic- wind System Suitable for Rural Electrification. Sustainable Cities and Society, (25), 90-101. https://doi.org/10.1016/j.scs.2015.12.002

Yu, Y., Liu, J., Wang, H., & Liu, M. (2011). Assess the Potential of Solar Irrigation Systems for Sustaining Pasture Lands in Arid Regions – A Case Study in Northwestern China. Applied Energy, (88), 3176-3182. https://doi.org/10.1016/j.apenergy.2011.02.028

Zavala, V., López-Luque, R., Reca, J., Martínez, J., & Lao, M. T. (2020). Optimal Management of a Multisector Standalone Direct Pumpig Photovoltaic Irrigation System. Applied Energy, (260). https://doi.org/10.1016/j.apenergy.2019.114261

Zhang, J., Liu, J., Campana, P. E., Zhang, R., Yan, J., & Gao, X. (2014). Model of Evapotranspiration and Groundwater Level Based on Photovoltaic Water Pumping System. Applied Energy, (136), 1132-1137. https://doi.org/10.1016/j.apenergy.2014.05.045

Publicado

2022-06-30 — Atualizado em 2022-09-27

Versões

Edição

Seção

Estudo de caso

Como Citar

Impacto da implementação da irrigação com energia solar nas culturas de limões. (2022). Revista Logos Ciencia & Tecnología, 14(2), 90-107. https://doi.org/10.22335/rlct.v14i2.1571 (Original work published 2022)