Metodologia para priorizar a entrega de ajuda humanitária no contexto da pandemia covid-19, usando a ferramenta QFD Fuzzy
DOI:
https://doi.org/10.22335/rlct.v13i2.1371Palavras-chave:
ajuda humanitária, covid-19, priorização, QFD Fuzzy, tomada de decisãoResumo
O impacto da interrupção causada pela Covid-19 gerou vários desafios relacionados à tomada de decisões nos governos locais, como priorizar as famílias afetadas de acordo com seu nível de vulnerabilidade, para garantir uma alocação equitativa da ajuda humanitária. Esse artículo propõe um marco metodológico baseado no método de desdobramento de função de qualidade difusa (QFD Fuzzy) para priorizar famílias afetadas pela Covid-19, considerando variáveis como cobertura de populações afetadas, tempos de privação, eficiência em custos e segurança na entrega. A metodologia proposta é testada a partir de dados sintéticos obtidos de uma amostra de 1000 famílias, a fim de estabelecer a ordem de atendimento à população de um município do centro do Vale do Cauca. Este documento estabelece uma estratégia que oferece a um governo maior eficácia na tomada de decisões para atender uma emergência de saúde como a Covid-19, que apoia a intenção humanitária envolvida nesta gestão. É necessário insistir, em qualquer caso, que não se trata de uma metodologia que possa ser estática, motivo pelo qual as variáveis que podem surgir como indicadores de vulnerabilidade devem ser consideradas de forma pertinente. Isso é apresentado como pesquisa complementar futura.
Downloads
Referências
Balaji, K., & Kumar, V. S. S. (2014). Multicriteria Inventory ABC Classification in an Automobile Rubber Components Manufacturing Industry. Procedia CIRP, 17, 463- 468. https://doi.org/10.1016/j.procir.2014.02.044
Balcik, B., Beamon, B. M., & Smilowitz, K. (2008). Last mile distribution in humanitarian relief. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 12(2), 51-63. https://doi.org/10.1080/15472450802023329
Baykasoglu, A., Subulan, K., & Karaslan, F. S. (2016). A new fuzzy linear assignment method for multi-attribute decision making with an application to spare parts inventory classification. Applied Soft Computing, 42, 1-17. https://doi.org/10.1016/j.asoc.2016.01.031
Bevilacqua, M., Ciarapica, F. E., & Giacchetta, G. (2006). A fuzzy-QFD approach to supplier selection, 12, 14-27. https://doi.org/10.1016/j.pursup.2006.02.001
Bhalaji, R. K. A., Bathrinath, S., & Saravanasankar, S. (2020). A Fuzzy VIKOR method to analyze the risks in lean manufacturing implementation. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.05.123
Bhattacharya, A., Sarkar, B., & Mukherjee, S. (2007). Distance-based consensus method for ABC analysis. International Journal of Production Research, 45(15), 3405-3420. https://doi.org/10.1080/00207540600847145
Cakir, O., & Canbolat, M. S. (2008). A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, 35(3), 1367-1378. https://doi.org/10.1016/j.eswa.2007.08.041
Chen, Y., Li, K. W., & Liu, S. (2008). A Comparative Study on Multicriteria ABC Analysis in Inventory Management. 2008 IEEE International Conference on Systems, Man and Cybernetics, 3280-3285.
Chu, C. W., Liang, G. S., & Liao, C. T. (2008). Controlling inventory by combining ABC analysis and fuzzy classification. Computers and Industrial Engineering, 55(4), 841-851. https://doi.org/10.1016/j.cie.2008.03.006
Deveci, M., Öner, S. C., Canıtez, F., & Öner, M. (2019). Evaluation of service quality in public bus transportation using interval- valued intuitionistic fuzzy QFD methodology. Research in Transportation Business & Management, 33. https://doi.org/10.1016/j.rtbm.2019.100387
Falcone, D., De Felice, F., Forcina, A., Silvestri, A., & Petrillo, A. (2014). Inventory management using both quantitative and qualitative criteria in manufacturing system. IFAC Proceedings Volumes, 47(3). https://doi.org/10.3182/20140824-6-ZA-003.02279
Ferrer, J. M., Martín-Campo, F. J., Ortuño, M. T., Pedraza-Martínez, A. J., Tirado, G., & Vitoriano, B. (2018). Multi-criteria optimization for last mile distribution of disaster relief aid: Test cases and applications. European Journal of Operational Research, 269(2), 501-515. https://doi.org/10.1016/j.ejor.2018.02.043
Flores, B. E., Olson, D. L., & Dorai, V. K. (1992). Management inventory of multicriteria classification. Mathematical and Computer Modelling, 16(12), 71-82. https://doi.org/10.1016/0895-7177(92)90021-C
Galo, N. R., Daniel, L., Rosso, D., Cesar, L., & Carpinetti, R. (2018). A group decision approach for supplier categorization based on hesitant fuzzy and ELECTRE TRI. International Journal of Production Economics, 202, 182-196. https://doi.org/10.1016/j.ijpe.2018.05.023
Gutjahr, W. J., & Nolz, P. C. (2016). Multicriteria optimization in humanitarian aid. European Journal of Operational Research, 252, 351-366. https://doi.org/10.1016/j.ejor.2015.12.035
Hashemi, S. H., Tavana, M., & Abdi, M. (2020). A comprehensive framework for analyzing challenges in humanitarian supply chain management : A case study of the Iranian Red Crescent Society. International Journal of Disaster Risk Reduction, 42. https://doi.org/10.1016/j.ijdrr.2019.101340
Henao, D., López, F., Chud Pantoja, V. L., & Osorio, J. C. (2019). Priorización multicriterio para la afiliación a un banco de alimentos en Colombia. Revista Logos, Ciencia & Tecnología, 12(1), 58-70. https://doi.org/10.22335/rlct.v12i1.1024
Huang, K., & Rafiei, R. (2019). Equitable last mile distribution in emergency response. Computers and Industrial Engineering, 127, 887-900.
Li, X., Ramshani, M., & Huang, Y. (2018). Cooperative maximal covering models for humanitarian relief chain management. Computers & Industrial Engineering, 119, 301-308. https://doi.org/10.1016/j.cie.2018.04.004
Liu, X., & Wan, S. ping. (2019). A method to calculate the ranges of criteria weights in ELECTRE I and II methods. Computers and Industrial Engineering, 137. https://doi.org/10.1016/j.cie.2019.106067
Makan, A., & Fadili, A. (2020). Sustainability assessment of large-scale composting technologies using PROMETHEE method. Journal of Cleaner Production, 261. https://doi.org/10.1016/j.jclepro.2020.121244
Mary, S., & Mishra, A. K. (2020). Humanitarian food aid and civil conflict. World Development, 126. https://doi.org/10.1016/j.worlddev.2019.104713
Naji-azimi, Z., Renaud, J., Ruiz, A., & Salari, M. (2012). A covering tour approach to the location of satellite distribution centers to supply humanitarian aid. European Journal of Operational Research, 222(3), 596-605. https://doi.org/10.1016/j.ejor.2012.05.001
Osorio Gómez, J. C. (2011). Fuzzy QFD for multicriteria decision making - Application example. Prospectiva, 9(2), 22-29.
Osorio, J. C., Arango, D. C., & Ruales, C. E. (2011). Selección de proveedores usando el despliegue de la función de calidad difusa. Revista EIA, 15, 73-83.
Osorio, J. C., Manotas, D. F., & Rivera, L. (2017). Priorización de Riesgos Operacionales para un Proveedor de Tercera Parte Logística - 3PL. Información Tecnológica, 28(4), 135-144. https://doi.org/10.4067/S0718-07642017000400016
Osorio, J. C., & Manotas, D. F. (2018). AHP Topsis para la selección de proveedores considerando el riesgo asociado a la calidad. Espacios, 39(16).
Rabta, B., Wankmüller, C., & Reiner, G. (2018). A drone fleet model for last-mile distribution in disaster relief operations. International Journal of Disaster Risk Reduction, 28, 107-112. https://doi.org/10.1016/j.ijdrr.2018.02.020
Ruiz-Estrada, M. A., & Ndoma, A. (2019). The uses of unmanned aerial vehicles – UAV ’ s- ( or drones ) in social logistic : disasters and humanitarian relief aid. Procedia Computer Science, 149, 375-383. https://doi.org/10.1016/j.procs.2019.01.151
Shao, J., Wang, X., Liang, C., & Holguín-Veras, J. (2019). Research progress on deprivation costs in humanitarian logistics. International Journal of Disaster Risk Reduction, 42. https://doi.org/10.1016/j.ijdrr.2019.101343
Suzuki, Y. (2019). Impact of material convergence on lastmile distribution in humanitarian logistics. International Journal of Production Economics, 223. https://doi.org/10.1016/j.ijpe.2019.107515
UNGRD. (2020). Informe Operación COVID-19. http://portal.gestiondelriesgo.gov.co/Paginas/Slide_home/Informe-Operacion-COVID-19.aspx
Wang, Z., & Zhang, J. (2019). Agent-based evaluation of humanitarian relief goods supply capability. International Journal of Disaster Risk Reduction, 36. https://doi.org/10.1016/j.ijdrr.2019.101105
Więckowski, J., & Sałabun, W. (2020). How the normalization of the the decision decision influences influences the results in the VIKOR method ? Procedia Computer Science, 176, 2222-2231. https://doi.org/10.1016/j.procs.2020.09.259
Zhou, S., Ji, X., & Xu, X. (2020). A hierarchical selection algorithm for multiple attributes decision making with large-scale alternatives. Information Sciences, 521, 195-208. https://doi.org/10.1016/j.ins.2020.02.030
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2021 Revista Logos Ciencia & Tecnología Journal
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta revista proporciona acesso livre e imediato ao seu conteúdo (https://creativecommons.org/licenses/by/4.0/legalcode#languages), sob o princípio de que fazer disponível gratuitamente pesquisa ao público apoia a um maior intercâmbio de conhecimento global. Isto significa que os autores transferem o Copyright à revista, para que possam realizar cópias e distribuição dos conteúdos por qualquer meio, sempre que se mantenha o reconhecimento de seus autores, não faça uso comercial das obras e não realize nenhuma modificação delas.