Software para a obtenção de um modelo de propagação estatística em tempo real

Autores

DOI:

https://doi.org/10.22335/rlct.v12i3.1266

Palavras-chave:

propagação, rádio enlace, estatístico, software, modelo

Resumo

O processo de investigação está baseado no desenho de um aplicativo desktop para provas de cobertura em interiores e exteriores de enlaces sem fio na banda de frequências de 2,4 GHz com o uso de software livre, que permite capturar, processar, analisar, calcular e gerar um modelo matemático de tipo estatístico em tempo real do hardware do controle de acesso à mídia (MAC) incorporado na placa de rede sem fio de um computador portátil – laptop- que detecta o nível de potência, as portadoras e outras variáveis dentro dos tramas de informação que transmitem as estações base. A metodologia é experimental. Primeiro, são analisados diferentes modelos de propagação, depois, são estudadas as ferramentas de prova existentes e depois se comparam as tecnologias e ferramentas de hardware e software; se seleciona a linguagem de programação e finalmente gera-se o código e a interfase gráfica do aplicativo com a finalidade de visualizar o modelo matemático expressado por meio do uso de mínimos quadrados com o algoritmo de Levenberg-Marquardt e compará-lo com modelos de propagação reconhecidos.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Jorge Enrique Herrera Rubio, Universidad de Pamplona

    Ingeniero en Electrónica. Maestria en electrónica. Ph.D. en ciencias.

  • José Yecid Moreno Villamizar, Universidad de Pamplona

    Ingeniero en Telecomunicaciones

  • Blanca Mery Rolón Rodríguez, Fundación de Estudios Superiores Comfanorte

    Lic. en educación Primaria Énfasis en Ciencias Sociales. Especialista en educación Democracia y Desarrollo Social. Magíster en Pedagogía. Candidata a Doctora en Gerencia y política educativa.

Referências

Ambroziak, S. J., & Katulski, R. J. (2014). Path loss modelling in the untypical outdoor propagation environments. 2014 31th URSI General Assembly and Scientific Symposium, URSI GASS 2014, 3–6. https://doi.org/10.1109/URSIGASS.2014.6929655

Ayadi, M., Ben Zineb, A., & Tabbane, S. (2017). A UHF Path Loss Model Using Learning Machine for Heterogeneous Networks. IEEE Transactions on Antennas and Propagation, 65(7), 3675–3683. https://doi.org/10.1109/TAP.2017.2705112

Bhanage, G. (2017). AMSDU vs AMPDU : A Brief Tutorial on WiFi Aggregation Support. 1–3.

Bouleanu, I., Helbet, R., & Craiu, N. (2016). The Quality of the Propagation Prediction with Radio Mobile for Tetra Communication Systems. International Conference KNOWLEDGE-BASED ORGANIZATION, 22(3), 510–514. https://doi.org/10.1515/kbo-2016-0088

Bureau, R. (2011). HANDBOOK Spectrum Monitoring. International Telecommunication Union (ITU), 168.

Chen, C. C., Chen, Y. R., Lu, W. C., Tsai, S. C., & Yang, M. C. (2017). Detecting amplification attacks with Software Defined Networking. 2017 IEEE Conference on Dependable and Secure Computing, 195–201. https://doi.org/10.1109/DESEC.2017.8073807

Chen, Z., & Zhang, Y. (2017). Distributed spectrum monitoring system based on RSSI optimization algorithm. Progress in Electromagnetics Research Symposium, 2017-Novem, 2350–2355. https://doi.org/10.1109/PIERS-FALL.2017.8293529

Choudhary, S., & Dhaka, D. K. (2015). Path loss Prediction Models for Wireless Communication Channels and its Comparative Analysis. International Journal Of Engineering, Management & Sciences (IJEMS), 2(3), 38–43.

Cornejo, & Rebolledo. (2016). Estimación De Parámetros En Modelos No Lineales: Algoritmos Y Aplicaciones Estimation of Parameters in Nonlinear Models: Algorithms and Applications. Revista EIA, 13(25), 81–98. https://doi.org/10.24050/reia.v13i25.1019

Cui, M., Yang, K., Xu, X. L., Wang, S. D., & Gao, X. W. (2016). A modified Levenberg-Marquardt algorithm for simultaneous estimation of multi-parameters of boundary heat flux by solving transient nonlinear inverse heat conduction problems. International Journal of Heat and Mass Transfer, 97, 908–916. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.085

Elsheikh, E. A. A., Islam, M. R., Habaebi, M. H., Ismail, A. F., & Zyoud, A. (2017). Dust Storm Attenuation Modeling Based on Measurements in Sudan. IEEE Transactions on Antennas and Propagation, 65(8), 4200–4208. https://doi.org/10.1109/TAP.2017.2715369

Forsyth, J., & Zarrouk, S. J. (2018). A Review of Static Formation Temperature Test Evaluation Methods. November.

Giustiniano, D., Bednarek, M., Bourchas, T., & Lenders, V. (2015). Deep inspection of the noise in WiFi time-of-flight echo techniques. MSWiM 2015 - Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 5–12. https://doi.org/10.1145/2811587.2811621

Guerrero-Higueras, A. M., García-Ortega, E., Sánchez, J. L., Lorenzana, J., & Matellán, V. (2013). Schedule WRF model executions in parallel computing environments using Python. 3rd Symposium on Advances in Modeling and Analysis Using Python. AMS Annual Meeting. Austin, TX, EEUU., 1–6.

Günther, S. M., Leclaire, M., Michaelis, J., & Carle, G. (2014). Analysis of injection capabilities and media access of IEEE 802.11 hardware in monitor mode. IEEE/IFIP NOMS 2014- IEEE/IFIP Network Operations and Management Symposium: Management in a Software Defined World. https://doi.org/10.1109/NOMS.2014.6838262

Hamim & Jamlos, M. (2014). An overview of Outdoor Propagation Prediction Model. IEEE International Sympousium on Telecommunication Technologies, 385–388.

Harwani, B. M. (2018). Qt5 Python GUI Programming.

ITU, I. T. U. (2015). Manual Comprobación Técnica del Espectro. In Manual (Vol. 1). https://www.itu.int/dms_pub/itu-r/opb/hdb/R-HDB-21-2015-PDF-S.pdf

Kasampalis, S., Lazaridis, P. I., Zaharis, Z. D., Bizopoulos, A., Zettas, S., & Cosmas, J. (2014). Comparison of Longley-Rice, ITU-R P.1546 and Hata-Davidson propagation models for DVB-T coverage prediction. IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, BMSB, 29, 2–4. https://doi.org/10.1109/BMSB.2014.6873518

Kaveh, K., Duc Bui, M., & Rutschmann, P. (2017). A comparative study of three different learning algorithms applied to ANFIS for predicting daily suspended sediment concentration. International Journal of Sediment Research, 32(3), 340–350. https://doi.org/10.1016/j.ijsrc.2017.03.007

Kochláň, M., Miček, J., & Ševčík, P. (2014). 2.4GHz ISM Band Radio Frequency Signal Indoor Propagation. Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, 2, 1027–1034. https://doi.org/10.15439/2014f299

Lei, K., Ma, Y., & Tan, Z. (2015). Performance comparison and evaluation of web development technologies in PHP, Python and Node.js. Proceedings - 17th IEEE International Conference on Computational Science and Engineering, CSE 2014, Jointly with 13th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2014, 13th International Symposium on Pervasive Systems, 661–668. https://doi.org/10.1109/CSE.2014.142

Malik, M. H., Aydin, M., Shah, Z., & Hussain, S. (2014). Stochastic model of TCP and UDP traffic in IEEE 802.11b/g. Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, ICIEA 2014, 2170–2175. https://doi.org/10.1109/ICIEA.2014.6931531

Medvidovic, N., & Taylor, R. N. (2010). Software Architecture: Foundations , Theory , and Practice. Africa, 471–472. https://doi.org/10.1145/1810295.1810435

Morocho-Yaguana, M., Ludena-Gonzalez, P., Sandoval, F., Poma-Velez, B., & Erreyes-Dota, A. (2018). An optimized propagation model based on measurement data for indoor environments. Journal of Telecommunications and Information Technology, 2018(2), 69–75. https://doi.org/10.26636/jtit.2018.117217

Neidhardt, E., Uzun, A., Bareth, U., & Kupper, A. (2013). Estimating locations and coverage areas of mobile network cells based on crowdsourced data. Proceedings of 2013 6th Joint IFIP Wireless and Mobile Networking Conference, WMNC 2013. https://doi.org/10.1109/WMNC.2013.6549010

Newville, M., & Stensitzki, T. (2018). Non-Linear Least-Squares Minimization and Curve-Fitting for Python Matthew Newville, Till Stensitzki, and others.

Pinnagoda, S. S. (2017). Comprobación Técnica International de las emisiones (servicios terrenales).

Ponomarenko-Timofeev, A., Pyattaev, A., Andreev, S., Koucheryavy, Y., Mueck, M., & Karls, I. (2016). Highly dynamic spectrum management within licensed shared access regulatory framework. IEEE Communications Magazine, 54(3), 100–109. https://doi.org/10.1109/MCOM.2016.7432155

Rademacher, M., & Kessel, M. (2015). An Empirical Evaluation of the Received Signal Strength Indicator for fixed outdoor 802.11 links. VDE ITG-Fachbericht Mobilkommunikation, 20, 62–66.

Recommendation P-1406-2 ITU-R. (2015). RECOMMENDATION P.1406-2 Propagation effects relating to terrestrial land mobile and broadcasting services in the VHF and UHF bands. Electronic Publication, P-series. https://www.itu.int/rec/R-REC-P.1406-2-201507-I/en

Robyns, P., Quax, P., & Lamotte, W. (2015). Injection attacks on 802.11n MAC frame aggregation. Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks - WiSec ’15, 1–11. https://doi.org/10.1145/2766498.2766513

Rodofile, N. R., Radke, K., & Foo, E. (2015). Real-Time and Interactive Attacks on DNP3 Critical Infrastructure Using Scapy. Conferences in Research and Practice in Information Technology Series, 161(January), 67–70.

Rosati, S. (2014). Wireless access point spoofing and mobile devices geolocation using swarms of flying robots Master optional semester project, spring 2014.

Salvadè, A., Guggiari, P., & Lanini, M. (2004). Basis for a UMTS measurement recommendation. SUPSI–DTI Alta Frequenza Phone.

Sandhya, S., Purkayastha, S., Joshua, E., & Deep, A. (2017). Assessment of website security by penetration testing using Wireshark. 2017 4th International Conference on Advanced Computing and Communication Systems, ICACCS 2017, 4–7. https://doi.org/10.1109/ICACCS.2017.8014711

Sati, G., & Singh, S. (2014). A review on outdoor propagation models in radio communication. International Journal of Computer Engineering & Science, 4(2), 64–68.

Scapy. (2018). Welcome to Scapy’s documentation! — Scapy 2.4.0-dev documentation. https://scapy.readthedocs.io/en/latest/index.html

SciPy v1.2.1 Reference Guide. (2018). https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

Stüber, G. L. (2017). Principles of mobile communication: Fourth edition. In Principles of Mobile Communication: Fourth Edition. https://doi.org/10.1007/978-3-319-55615-4

Toushmalani, R., Parsa, Z., & Esmaeili, A. (2014). Comparison result of inversion of gravity data of a fault by Cuckoo Optimization and Levenberg-Marquardt methods. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(1), 418–427. https://doi.org/10.1186/2193-1801-2-462

Yacoub, M. D. (2019). Foundations of Mobile Radio Engineering. In Foundations of Mobile Radio Engineering. https://doi.org/10.1201/9780203755563

Yaghoubi, F., Abbasfar, A. A., & Maham, B. (2014). Energy-efficient RSSI-based localization for wireless sensor networks. IEEE Communications Letters, 18(6), 973–976. https://doi.org/10.1109/LCOMM.2014.2320939

Yassin, M., & Rachid, E. (2015). A survey of positioning techniques and location based services in wireless networks. 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems, SPICES 2015, Ii. https://doi.org/10.1109/SPICES.2015.7091420

Zeng, P., Xiao, J., He, J., & Yu, H. (2017). RSSI positioning method based on frequency-hopping spread spectrum technology. 2(12).

Zhou, X., Jacobsson, M., Uijterwaal, H., & Mieghem, P. (2010). IPv6 delay and loss performance evolution. International Journal of Communication Systems, 23(5), 633–652. https://doi.org/10.1002/dac.916

Zou, H., Chen, Z., Jiang, H., Xie, L., & Spanos, C. (2017). Accurate indoor localization and tracking using mobile phone inertial sensors, WiFi and iBeacon. 4th IEEE International Symposium on Inertial Sensors and Systems, INERTIAL 2017 - Proceedings, 1, 1–4. https://doi.org/10.1109/ISISS.2017.7935650

Publicado

2020-11-11

Edição

Seção

Artigos de revisão

Como Citar

Software para a obtenção de um modelo de propagação estatística em tempo real. (2020). Revista Logos Ciencia & Tecnología, 12(3), 128-137. https://doi.org/10.22335/rlct.v12i3.1266