Relação entre condição atmosférica e mortalidade humana associada com material Particulado grosso em Bogotá (Colômbia)

Autores

DOI:

https://doi.org/10.22335/rlct.v12i3.1237

Palavras-chave:

Bogotá, contaminação atmosférica, estabilidade atmosférica, megacidade, saúde pública, PM10

Resumo

Este artigo estuda a relação entre condição atmosférica (CA) e taxa de mortalidade humana associada com o material particulado grosso (PM10) em una megacidade de elevada altitude (Bogotá-Colômbia). Coletou-se informação de três estações automáticas de monitoramento equipadas com instrumentos de medição para PM10, temperatura, radiação solar e velocidade do vento. O período de amostragem teve uma duração de seis anos. Os resultados revelaram o melhor cenário possível para as máximas concentrações horárias de PM10 (52.3-135 μg/m3). Estes eventos ocorreram durante períodos diur¬nos onde a CA predominante esteve entre instável e muito instável. O risco por exposição a PM10 mostrou que fevereiro>março>janeiro foram os de maior risco. Estes meses mostraram concentrações de PM10 um 35.9% mais elevadas que aquelas observadas durante os meses de menor risco (agosto>junho>julho). Sugeriu-se uma maior taxa de mortalidade (+2,0%) em setores urbanos com menor instabilidade atmosférica (IA) e predominância de cobertura impermeável, em comparação com setores de maior IA e predominância de cobertura vegetada.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Carlos Alfonso Zafra-Mejía, Universidad Distrital Francisco José de Caldas

    Grupo de Investigación en Ingeniería Ambiental, Dr. en Ingeniería Ambiental. Facultad del Medio Ambiente y Recursos Naturales.

  • Juan Pablo Rodríguez-Miranda, Universidad Distrital Francisco José de Caldas
    Facultad del Medio Ambiente y Recursos Naturales. Dr. en Ingeniería.
  • Hugo Alexander Rondón-Quintana, Universidad Distrital Francisco José de Caldas
    Facultad del Medio Ambiente y Recursos Naturales. Dr. en Ingeniería.

Referências

Chambers, S. D., Wang, F., Williams, A. G., Xiaodong, D., Zhang, H., Lonati, G.,... Allegrini, I. (2015). Quantifying the influences of atmospheric stability on air pollution in Lanzhou, China, using a radon-based stability monitor. Atmospheric Environment, 107, 233-243. https://doi.org/10.1016/j.atmosenv.2015.02.016

Chen, X., Pei, T., Zhou, Z., Teng, M., He, L., Luo, M., & Liu, X. (2015). Efficiency differences of roadside greenbelts with three configurations in removing coarse particles (PM10): A street scale investigation in Wuhan, China. Urban Forestry & Urban Greening, 14(2), 354-360. https://doi.org/10.1016/j.ufug.2015.02.013

Dahari, N., Latif, M. T., Muda, K., & Hussein, N. (2020). Influence of meteorological variables on suburban atmospheric PM2.5 in the southern region of peninsular Malaysia. Aerosol and Air Quality Research, 20, 14-25. https://doi.org/10.4209/aaqr.2019.06.0313

Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E.,... Speizer, F. E. (1993). An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine, 329(24), 1753-1759. https://doi.org/10.1056/NEJM199312093292401

Fowler, D., Skiba, U., Nemitz, E., Choubedar, F., Branford, D., Donovan, R., & Rowland, P. (2004). Measuring Aerosol and Heavy Metal Deposition on Urban Woodland and Grass Using Inventories of 210PB and Metal Concentrations in Soil. In R. K. Wieder, M. Novák, & M. A. Vile (Eds.), Biogeochemical Investigations of Terrestrial, Freshwater, and Wetland Ecosystems across the Globe (pp. 483-499). Springer Netherlands. https://doi.org/10.1007/978-94-007-0952-2_33

Franck, U., Leitte, A. M., & Suppan, P. (2014). Multiple exposures to airborne pollutants and hospital admissions due to diseases of the circulatory system in Santiago de Chile. The Science of the Total Environment, 468-469, 746-756. https://doi.org/10.1016/j.scitotenv.2013.08.088

Gifford, F. A. (1976). Turbulent diffusion-typing schemes: A review. http://inis.iaea.org/Search/search.aspx?orig_q=RN:8296495

Hernández, E., Martín, F., & Valero, F. (1992). Statistical forecast models for daily air particulate iron and lead concentrations for Madrid, Spain. Atmospheric Environment. Part B. Urban Atmosphere, 26(1), 107-116. https://doi.org/10.1016/0957-1272(92)90042-Q

Hou, Q., An, X., Tao, Y., & Sun, Z. (2016). Assessment of resident’s exposure level and health economic costs of PM10 in Beijing from 2008 to 2012. Science of the Total Environment, 563-564, 557-565. https://doi.org/10.1016/j.scitotenv.2016.03.215

Islam, M. N., Rahman, K.-S., Bahar, M. M., Habib, M. A., Ando, K., & Hattori, N. (2012). Pollution attenuation by roadside greenbelt in and around urban areas. Urban Forestry & Urban Greening, 11(4), 460-464. https://doi.org/10.1016/j.ufug.2012.06.004

Katsouyanni, K., Schwartz, J., Spix, C., Touloumi, G., Zmirou, D., Zanobetti, A., ... Anderson, H. R. (1996). Short term effects of air pollution on health: A European approach using epidemiologic time series data: the APHEA protocol. Journal of Epidemiology and Community Health, 50(Suppl 1), S12-S18.

Lacasaña, M., Aguilar, C., & Romieu, I. (1999). Evolución de la contaminación del aire e impacto de los programas de control en tres megaciudades de América Latina. Salud Pública de México, 41(3), 203-215.

Lee, S., Ho, C.H., Lee, Y. G., Choi, H.J., & Song, C.K. (2013). Influence of transboundary air pollutants from China on the high-PM10 episode in Seoul, Korea for the period October 16–20, 2008. Atmospheric Environment, 77, 430-439. https://doi.org/10.1016/j.atmosenv.2013.05.006

Liu, W., Xu, Z., & Yang, T. (2018). Health effects of air pollution in China. International Journal of Environmental Research and Public Health, 15(7). https://doi.org/10.3390/ijerph15071471

Maesano, C. N., Morel, G., Matynia, A., Ratsombath, N., Bonnety, J., Legros, G., ... Annesi-Maesano, I. (2020). Impacts on human mortality due to reductions in PM10 concentrations through different traffic scenarios in Paris, France. Science of The Total Environment, 698, 134257. https://doi.org/10.1016/j.scitotenv.2019.134257

MAVDT. (2010). Resolución 610 de 2010 Ministerio de Ambiente, Vivienda y Desarrollo Territorial. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=39330

Montoya, G. de J., Cepeda, W., & Eslava, J. A. (2004). Características de la turbulencia y de la estabilidad atmosférica en Bogotá. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 28(108), 327-335.

Palacio, D. F., Zafra, C. A., & Rodríguez, J. P. (2014). Evaluation of the air quality by using a mobile laboratory: Puente Aranda (Bogotá D.C., Colombia). Revista Facultad de Ingeniería Universidad de Antioquia, 71, 153-166.

Pasquill, F. (1961). The estimation of the dispersion of windborne material. Meteorol. Mag., 90, 33-49.

Sarmiento, R., Hernández, L. J., Medina, E. K., Rodríguez, N., & Reyes, J. (2015). Respiratory symptoms associated with air pollution in five localities of Bogotá, 2008-2011, a dynamic cohort study. Biomédica, 35(SPE), 167-176. https://doi.org/10.7705/biomedica.v35i0.2445

Shan, Y., Jingping, C., Liping, C., Zhemin, S., Xiaodong, Z., Dan, W., & Wenhua, W. (2007). Effects of vegetation status in urban green spaces on particle removal in a street canyon atmosphere. Acta Ecologica Sinica, 27(11), 4590-4595. https://doi.org/10.1016/S1872-2032(08)60007-4

Srinivas, C. V., Venkatesan, R., Somayaji, K. M., & Indira, R. (2009). A simulation study of short-range atmospheric dispersion for hypothetical air-borne effluent releases using different turbulent diffusion methods. Air Quality, Atmosphere & Health, 2(1), 21-28. https://doi.org/10.1007/s11869-009-0030-6

Terrouche, A., Ali-Khodja, H., Kemmouche, A., Bouziane, M., Derradji, A., & Charron, A. (2016). Identification of sources of atmospheric particulate matter and trace metals in Constantine, Algeria. Air Quality, Atmosphere & Health, 9(1), 69-82. https://doi.org/10.1007/s11869-014-0308-1

Turner, D. B. (1964). A diffusion model for an urban area. Journal of Applied Meteorology, 3(1), 83-91. https://doi.org/10.1175/1520-0450(1964)003<0083:ADMFAU>2.0.CO;2

U.S.EPA. (1999). Compendium of methods for the determination of inorganic compounds in ambient air.

Vecchi, R., Marcazzan, G., & Valli, G. (2007). A study on night time–daytime PM10 concentration and elemental composition in relation to atmospheric dispersion in the urban area of Milan (Italy). Atmospheric Environment, 41(10), 2136-2144. https://doi.org/10.1016/j.atmosenv.2006.10.069

WHO. (2005). WHO | Air quality guidelines—Global update 2005. WHO. https://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/

Yang, J., Zhou, M., Zhang, F., Yin, P., Wang, B., Guo, Y.,... Liu, Q. (2020). Diabetes mortality burden attributable to shortterm effect of PM10 in China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-08376-1

Zafra, C., Ángel, Y., & Torres, E. (2017). ARIMA analysis of the effect of land surface coverage on PM10 concentrations in a high-altitude megacity. Atmospheric Pollution Research, 8(4), 660-668. https://doi.org/10.1016/j.apr.2017.01.002

Zafra-Mejía, C., Gutiérrez-Malaxechebarria, Á., & Hernández-Peña, Y. (2019). Correlation between vehicular traffic and heavy metal concentrations in road sediments of Bogotá, colombia. Revista Facultad de Medicina, 67(2), 193-199. https://doi.org/10.15446/revfacmed.v67n2.68269

Zoras, S., Triantafyllou, A. G., & Deligiorgi, D. (2006). Atmospheric stability and PM10 concentrations at far distance from elevated point sources in complex terrain: Worstcase episode study. Journal of Environmental Management, 80(4), 295-302. https://doi.org/10.1016/j.jenvman.2005.09.010

Publicado

2020-11-11

Edição

Seção

Artigos de pesquisa / Artigos Originais

Como Citar

Relação entre condição atmosférica e mortalidade humana associada com material Particulado grosso em Bogotá (Colômbia). (2020). Revista Logos Ciencia & Tecnología, 12(3), 57-68. https://doi.org/10.22335/rlct.v12i3.1237