Evaluation of a lab-scale system of floating macrophytes filter, as a wastewater treatment for a car wash
DOI:
https://doi.org/10.22335/rlct.v12i1.977Keywords:
Initial education, mathematical logical thinking, monotonous teaching, decontextualized, teaching mediationAbstract
The objective of this study was to evaluate the removal efficiency of a filter system using flotation macrophytes on a laboratory scale using water from a car wash. The Water Hyacinth (Eichhornia crassipes) and duckweed (Lemna minor) were use in the system, and the concentrations of BOD5, COD, TSS and SS in the system effluent were monitor for one month. Regarding the reduction of the parameters analyzed using Water Hyacinth, there was a maximum of 91.11% BOD5 removal and 97.32% COD, in the case of Duckweed 97% BOD5 removal and 83.67% COD. Finally, the system demonstrated optimum performance and removal efficiencies of more than 44.4% in terms of organic matter, sedimentary solids and suspended solids.Downloads
References
Al-Khafaji, M. S., Al-Ani, F. H., & Ibrahim, A. F. (2018). Removal of some heavy metals from industrial wastewater by lemmna minor. KSCE Journal of Civil Engineering, 22(4), 1077-1082. DOI:10.1007/s12205-017-1112-x.
Amare, E., Kebede, F., & Mulat, W. (2018). Wastewater treatment by Lemna minor and Azolla filiculoides in tropical semi-arid regions of Ethiopia. Ecological Engineering, 120, 464-473. doi:10.1016/j.ecoleng.2018.07.005.
Barrera, L., Díaz, A., López, E., Medina, E., Rivera, M., & Vallester, E. (2018). Evaluación del desempeño del filtro biológico de la Universidad Tecnológica de Panamá. https://doi.org/10.33412/rev-ric.v4.1.1863.
Beascoechea, E., Muñoz, J., Fernández, D., & Fernández, J. (2001). Manual de fitodepuración, filtros de macrófitas en flotación. Madrid: Universidad Politécnica de Madrid.
Ceschin, S., Sgambato, V., Ellwood, N. T. W., & Zuccarello, V. (2019). Phytoremediation performance of Lemna communities in a constructed wetland system for wastewater treatment. Environmental and Experimental Botany, 162, 67-71. doi:10.1016/j.envexpbot.2019.02.007.
Consulta realizada el día 26 de marzo del 2018 en el portal IDECA, Mapa de Referencia para el Distrito Capital, de la Unidad Administrativa Especial de Catastro Distrital – UAECD.
Daud, M. K., Ali, S., Abbas, Z., Ihsan, E. Z., Muhammad, A. R., Malik, A., Hussain, A., Rizwan, M., Zia-ur-Rehman, M., & Shui, J. Z. (2018). Potential of duckweed (Lemna minor) for the phytoremediation of landfill leachate. Journal of Chemistry. DOI:10.1155/2018/3951540.
Ekperusi, A. O., Sikoki, F. D., & Nwachukwu, E. O. (2019). Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere, 223, 285-309. DOI:10.1016/j.chemosphere.2019.02.025.
El Tiempo. (2019). ¿Quién regula los lavaderos de vehículos en Bogotá? Recuperado de https://www.eltiempo.com/bogota/quien-regula-los-lavaderos-de-carro-en-bogota-322934.
Escuela de Organización Industrial. (2016). Filtros verdes. Humedales. Macrófitas. Módulo de gestión de aguas residuales y reutilización. España: Escuela de Organización Industrial.
Hasan, M., & Chakrabarti, R. (2009). Use of algae and aquatic macrophytes as feed in small-scale aquaculture. Roma: Food and Agriculture Organization of the United Nations.
IDEAM. (2018). Reporte del Estudio Nacional del Agua ENA 2018. Bogotá, D. C. Recuperado de http://documentacion.ideam.gov.co/openbiblio/bvirtual/023846/Avance_ENA.pdf.
Koutika, L. S., & Rainey, H. (2014). A review of the invasive, biological and beneficial characteristics of aquatic species Eichhornia crassipes and Salvinia molesta. Applied Ecology and Environmental Research, 263-275. DOI:10.15666/aeer/1301_26327.
Lagos, C. (2005). Utilización del Jacinto acuático (Eichhornia crassipes) ([Mart] Solms, 1883) como sistema de tratamiento para la eliminación de materia orgánica y color en efluente de celulosa Kraft (tesis para optar al grado académico de Licenciado en Ciencias y al título profesional de Biólogo Marino). Concepción: Universidad Católica de la Santísima Concepción. Facultad de Ciencias.
Magar, R., Khan, A., & Honnutagi, A. (2017). Waste water treatment using Water Hyacinth. Conference: Innovation in engineering: Competitive strategy perspective, At 32nd Indian Engineering Congress, The Institution of Engineers (India).
Martelo, J., & Lara-Borrero, J. (2012). Macrófitas flotantes en el tratamiento de aguas residuales; una revisión del estado del arte. Ingeniería y Ciencia, 8(15), 221-243.
Medina, Y., Ortega de Miguel, E., & Salas, J. (2012). Tendencias actuales en las tecnologías de tratamiento de las aguas residuales generadas en las pequeñas aglomeraciones urbanas. Ingeniería Civil, 131-143.
Mello, D., Carvalho, K. Q., Passig, F. H., Freire, F. B., Borges, A. C., Lima, M. X., & Marcelino, G. R. (2019). Nutrient and organic matter removal from low strength sewage treated with constructed wetlands. Environmental Technology, 11-18. DOI: 10.1080/09593330.2017.1377291.
Metcalf & Eddy, I., Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., & Burton, F. (2013). Wastewater engineering: Treatment and resource recovery. 5th ed. McGraw-Hill Education.
Newete, S. W., & Byrne, M. J. (2016). The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environmental Science and Pollution Research International, 23(11), 10630-10643. DOI:10.1007/s11356-016-6329-6.
Priya, A., Avishek, K., & Pathak, G. (2012). Assessing the potentials of Lemna minor in the treatment of domestic wastewater at pilot scale. Environmental Monitoring and Assessment, 4301-4307. DOI:10.1007/s10661-011-2265-6.
Ramos-Espinosa, M. G., Rodríguez-Sánchez, L. M., & Martínez-Cruz, P. (2007). Uso de macrófitas acuáticas en el tratamiento de aguas para el cultivo de maíz y sorgo. Hidrobiológica, 17(Supl. 1), 7-15. Recuperado el 25 de febrero de 2019, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-88972007000400002&lng=es&tlng=es.
Secretaría Distrital de Ambiente. (2010). Guía para la gestión y manejo integral de residuos servicio de lavado de vehículos. Bogotá.
Secretaría Distrital de Ambiente. (2011). VIII fase del programa de seguimiento y monitoreo de efluentes industriales y corrientes superficiales de Bogotá, D. C. Bogotá. Recuperado de http://ambientebogota.gov.co/c/document_library/get_file?uuid=d9f9aa45-8f74-4f56-99ba-2836cffb8983&groupId=10157.
Shah, M., Hashmi, H. N., Ali, A., & Ghumman, A. R. (2014). Performance assessment of aquatic macrophytes for treatment of municipal wastewater. Journal of Environmental Health Science & Engineering, 12, 1-12.
Sukumaran, D. (2013). Phytoremediation of heavy metals from industrial effluent using 2308 constructed wetland technology. Appl. Ecol. Environ. Sci., 1, 92-97. DOI:10.12691/aees-1-5- 2309 4.
Teles, C. C., Mohedano, R. A., Tonon, G., Belli-Filho, P., & Costa, R. H. R. (2017). Ecology of duckweed ponds used for nutrient recovery from wastewater. Water Science and Technology, 75(12), 2926-2934. DOI:10.2166/wst.2017.172.
Word Bank Group. (2018). Water scarce cities - Thriving in a finite world. Washington, D. C.: World Bank. Recuperado de http://documents.worldbank.org/curated/en/281071523547385102/pdf/125187-REVISED-WP-W17100.pdf.
WWAP (Programa Mundial de Evaluación de los Recursos Hídricos de las Naciones Unidas). (2017). Informe mundial de las Naciones Unidas sobre el desarrollo de los recursos hídricos 2017. Aguas residuales: el recurso desaprovechado. París.
Downloads
Published
Issue
Section
License
This journal provides free and immediate access to its content (https://creativecommons.org/licenses/by/4.0/legalcode#languages), under the principle that making research available to the public free of charge supports greater global knowledge exchange. This means that the authors transfer the Copyrights to the journal, so that the material can be copied and distributed by any means, as long as the authors’ recognition is maintained, and the articles are not commercially used or modified in any way.