Analysis of the dynamic behavior of an independent double wishbone vehicle suspension
DOI:
https://doi.org/10.22335/rlct.v11i2.641Keywords:
Vehicle dynamics, double wishbone suspension, factorial design, oscillation amplitude, oscillation frequencyAbstract
The article presents a theoretical model, programmed with Matlab software, which allows the dynamic analysis of an independent double wishbone suspension. The validation is performed by means of a test bench and an experimental model, which makes it possible to acquire data on the dynamic behavior according to two fundamental parameters: oscillation amplitude and oscillation frequency, which represent the terrain profile and the linear speed of the vehicle, respectively. Graphs are obtained of position, speed, acceleration and forces on each kinematic torque and the centers of gravity of each component, as well as the forces exerted by each of the elements that make up the spring-shock assembly. All of these results are based on the two fundamental parameters mentioned above.
Downloads
References
Blundell, M., & Harty, D. (2014). The Multibody Systems Approach to Vehicle Dynamics. Oxford: Elsevier Butterworth-Heinemann.
Datte, P., & Ross, J. S. (2016). About the preliminary design of the suspension spring and shock absorber About the preliminary design of the suspension spring and shock absorber. https://doi.org/10.1088/1757-899X/147/1/012128
Dixon, J. C. (2009). Suspension Geometry and Computation. West Sussex: John Wiley and Sons Ltd.
Edgar, B. (2011). Diseño del sistema de suspensión de un veh´culo moniplaza Tipo formula Sena.
Giovanny Pablo, P. Q. (2012). Estudio cinemático del comportamiento de la suspensión de un prototipo de Formula SAE Student Eléctrico del equipo UPM Racing. Universidad Politécnica de Madrid.
Güler, D. (2006). Dynamic Analysis of Double Wishbone Suspension. School of Engineering and Sciences of İzmir Institute of Technology.
ISO 8855. Road vehicles — Vehicle dynamics and road-holding ability — Vocabulary, ISO § (2011). https://doi.org/10.1109/IEEESTD.2010.5733835
Luna Pasquel, B. A., & Vallejo Tito, J. A. (2017). Diseño, construcción e implementación de un banco de pruebas para el análisis de amortiguadores y muelles del sistema de suspensión de un vehículo. Universidad Técnica del Norte.
Mantilla Nova, D. (2014). Diseño óptimo de resortes tipo ballesta para la suspensión de un vehículo comercial considerando las condiciones dinámicas. Universidad Nacional de Colombia. Retrieved from http://www.bdigital.unal.edu.co/49812/
Mendoza, H., & Bautista, G. (n.d.). Diseño Experimental. Retrieved April 1, 2018, from http://168.176.60.11/cursos/ciencias/2000352/index.html
Montgomery, D. (2013). Diseño y Análisis de Experimentos. México: LIMUSA, S.A.
Morello, L., Genta, G., Cavallino, F., & Filtri, L. (2014). The Motor Car: Past, Present and Future. British Medical Journal (Vol. 2). Torino: Springer Science & Business Media. https://doi.org/10.1136/bmj.2.2380.308-a
Norton, R. L. (2013). Diseño de Maquinaria. Massachusetts: Mc Graw Hill Educación.
Rojas, G., & Arzola, N. (2013). Análisis del comportamiento dinámico de un vehículo con suspensión independiente tipo paralelogramo deformable y barras de estabilidad transversal. Revista Facultad de Ingenieria, (67), 112–125.
Sanz Celada, F. (2015). Análisis del sistema de dirección de un automóvil mediante Multibody de Simulink. Retrieved from http://hdl.handle.net/10016/25331%0ADescargado
Schommer, A., Soliman, P., Farias, L. T., & Martins, M. (2015). Analysis of a Formula SAE Vehicle Suspension : Chassis Tuning Analysis of a Formula SAE Vehicle Suspension : Chassis Tuning, (May 2017). https://doi.org/10.4271/2015-36-0275
Tanik, E., & Ş, V. P. (2015). On the analysis of double wishbone suspension, 9(3), 1–10. https://doi.org/10.1299/jamdsm.2015jamdsm0037
Thacker, S. (2015). Research paper on Design and analysis Double Wishbone Suspension system using Finite Element Analysis, 2(7), 19–22.
Thakare, S. A., Antapurkar, P. C., Shah, D. S., Dhamangaonkar, P. R., & Sapali, S. N. (2015). Design and Analysis of Modified Front Double Wishbone Suspension for a Three Wheel Hybrid Vehicle, II, 1–4.
Vega, W. H., Llanes-cedeño, E. A., & Molina, J. V. (2018). Revisión de las Características de Modelado y Optimización para el Diseño del Sistema de Suspensión Macpherson Review of the Modeling and Optimization Characteristics for the Design of the Macpherson Suspension System, 29(6), 221–234.
Yu, M., Evangelou, S. A., Dini, D., Yu, M., Evangelou, S. A., Dini, D., … Dini, D. (2017). Model Identification and Control for a Quarter Car Test Rig of Series Active ScienceDirect Model Identification and Control for a Quarter Car Test Rig of Model Identification and Control for a Quarter Car Test Rig of Model Identification for a Quarter Car Test Rig of Series Active. IFAC-PapersOnLine, 50(1), 3376–3381. https://doi.org/10.1016/j.ifacol.2017.08.529
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Revista Logos Ciencia & Tecnología
This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides free and immediate access to its content (https://creativecommons.org/licenses/by/4.0/legalcode#languages), under the principle that making research available to the public free of charge supports greater global knowledge exchange. This means that the authors transfer the Copyrights to the journal, so that the material can be copied and distributed by any means, as long as the authors’ recognition is maintained, and the articles are not commercially used or modified in any way.