Patterns in mosaics and tessellations from geometric compositions

Authors

DOI:

https://doi.org/10.22335/rlct.v10i2.569

Keywords:

mosaic, tessellation, geometric composition

Abstract

The Geometry, in charge of studying the qualities and properties of the forms that can be found in the habitable space or in mathematical theoretical exercises, can be used as a tool to generate mosaics or tessellations that respond to a mathematical logic, at the same time maintaining an artistic kind. Its usefulness can be manifested for various contexts for which a geometric composition defined as tessellation that can be used to cover different planes is presented in this article. After the exploration of shapes and figures using a geometric design methodology, a tessellation is presented as a result of two pieces that are articulated to form a mosaic responding to a design logic inspired by M. C. Escher.

Downloads

Download data is not yet available.

Author Biographies

  • Innias Miguel Cadena González, Universidad Francisco de Paula Santander

    Arquitecto

  • Mawency Vergel Ortega, Universidad Francisco de Paula Santander

    Doctora en Educación. Postdoctora en Imaginarios y representaciones sociales

  • Julio Alfredo Delgado Rojas, Universidad Francisco de Paula Santander

    Maestrante en Educación Matemática. Arquitecto

References

Bailey, D. Cairo Tiling, recuperado de http://www.tess-elation.co.uk/cairo-tiling.

Blatov, A., Shevchenko, P. & D. M. Proserpio, (2014). Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 14, 3576-3586.

Conway, J.H. & Lagarias, J.C. (1990). Tiling whit polyminoes and combinatorial group theory. Journal of combinatorial theory. 53. 183-208

de Souza, L. A., & Marafioti Garnica, A. V. (2013). The modern math movement(s): An essay on how elementary school teachers in brazil gave meaning to it. [As matemáticas modernas: Um ensaio sobre os modos de produção de significado ao(s) movimento(s) no ensino primário Brasileiro] Revista Latinoamericana De Investigacion En Matematica Educativa, 16(3), 369-393. doi:10.12802/relime.13.1634

Escher M.C, (2008). Estampas y dibujos. Introducción y comentarios de M.C. Escher. Ed. Taschen.

Gómez-Jáuregui V., Otero C., Arias R. and Manchado C. (2011). Generation and Nomenclature of Tessellations and Double-layer Grids.

Goodman-Strauss, C. & Sloane, N.J.A.. (2018). A coloring book approach to finding coordination sequences. Arxiv. 1. New York: Cornell University Library.

Harpe, P. (2000). Topics in Geometric Group Theory. Chicago: Univ. Chicago Press.

Hernández, M. M. V., & Rojas, E. M. (2016). Determinants of academic performance in mathematics in the context of a technological university: Application of structural equations model. [Factores que determinan el rendimiento académico en matemáticas en el contexto de una universidad tecnológica: Aplicación de un modelo de ecuaciones estructurales] Universitas Psychologica, 15(4), 1-11. doi:10.11144/Javeriana.upsy15-4.fdra

Herrera V., Montes, Y., Cruz C., Vargas A. (2010) Teselaciones: Una Propuesta para la Enseñanza y el Aprendizaje de la Geometría a Través del Arte. Bogotá: Universidad Distrital Francisco José de Caldas.

Mariño, S. (1938). Geometría en el arte y el diseño. Bogotá: Universidad Nacional.

Walkup, D. (1965). Covering a rectangle with T-tetrominoes, Amer. Math. Month!v . 72. 986-988

Published

2018-03-20

Issue

Section

Case studies

How to Cite

Patterns in mosaics and tessellations from geometric compositions. (2018). Revista Logos Ciencia & Tecnología, 10(2), 193-197. https://doi.org/10.22335/rlct.v10i2.569