A proposal to introduce functional thinking and the real function concept, prior to a course of differential calculus
DOI:
https://doi.org/10.22335/rlct.v10i2.557Keywords:
real function, functional thinking, variation, epistemological analysis, digital technologyAbstract
This article shows that an important factor in the failure of students in the first course of differential calculus is the lack of the concept of function. This is not surprising since several research reports show the complexity of this concept in different educational levels. It is proposed to start the course of calculation with a reinforcement of basic mathematical thinking, including functional thinking. We present evidence that the design of didactic activities based on this proposal substantially promotes the understanding of the concept of real function. To validate, we apply to 45 students, didactic activities that promote mathematical thinking; achieving an acceptable degree of functional thinking to bring the course of calculation to a good conclusion.
Downloads
References
Adams R. A. (2009). Cálculo (6ª ed.). Madrid, España: Addison Wesley.
Apostol T.M. (1996). Análisis matemático (2ª ed.). Barcelona, España: Reverté.
Artigue, M. (1990). Épistémologie et didactique. Recherches en didactique des mathématiques, 10(23), 241-286.
Attorps, I., Björk, K., y Radic, M. (2016). Generating the patterns of variation with GeoGebra: the case of polynomial approximations. International Journal of Mathematics Education in Science and Technology, 47(1), 45-57. DOI:10.1080/0020739X.2015.1046961.
Bell, A. y Janvier, C. (1981). The Interpretation of Graphics Representing Situations. For the Learning of Mathematic, 2(1), 33-42.
Benacka, J. y Ceretkova, S. 2013. Excel Modelling in Upper Secondary Mathematics – A Few Tips for Learning Functions and Calculus.
Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education (pp. 970-980). Turquía. Recuperado de htpp://CERME8_2013_Proceedings.pdf.
Blanco, L.J., Cárdenas, L.J., Figueiredo, C.A., Contreras, L.C. (2014). The Concept of Function and his Teaching and Learning. Far East Journal of Mathematics Education, 12(1), 47-78. Recuperado de
http://pphmj.com/journals/fjme.htm/out.pdf
Bloch, I. (2003). Teaching Functions in a Graphic Milieu: What forms of Knowledge enable Students to Conjeture and Prove? Educational Studies in Mathematics, 52(1), 3-28.
Boyer, C. B. (1946). Proportion, equation, function. Three steps in the development of a concept. Scripta Mathematica, 12, 5-13.
Cuevas, A. y Pluvinage, F. (2003). Les Projets D’action Pratique, Élements d´une Ingénierie d’Enseignement des Mathématiques. Annales de didactique et sciences cognitives, 8, 273-292.
Cuevas, A. y Díaz, J. (2014). La historia de la matemática un factor imprescindible en la elaboración de una propuesta didáctica. El caso del concepto de función. El Cálculo y su Enseñanza, 5, 165-179.
Cuevas, C. (2013). La enseñanza del cálculo Diferencial e Integral. México: Pearson Educación.
Cuevas, C. A., Martínez, M. y Pluvinage, F. (2012). Promoviendo el pensamiento funcional en la enseñanza del cálculo: un experimento con el uso de tecnologías digitales y sus resultados. Annales de Didactique et de Sciences Cognitives, 17, 137-168.
Cuevas, C. A., Moreno, S. y Pluvinage, F. (2005). Una experiencia de enseñanza del objeto de función. Annales de Didactique et de Sciences Cognitives, 10, 177-207.
Davis, P.J. (1993). Visual theorems. Educational Studies in Mathematics, 24(4), 333-334.
Delgado García, M. y Delgado Pineda, M. (2005). Análisis Matemático: Números, variables y funciones (2ª ed.). Madrid, España: Sanz y Torres.
Delgado Pineda, M. (2015). Registros para una función real cualquiera de variable real. El Cálculo y su Enseñanza, 6, 1-28.
Díaz Gómez, J.L. (2007). Ideas pedagógicas a partir de su historia e investigaciones. El Cálculo y su Enseñanza, 4, 13-26.
Dorier, J. (2000). Epistemological Analysis of the Genesis of the Theory of Vector Spaces. On the teaching of linear algebra. USA: Kluwer Academic Publishers.
Dubinsky, E. y, Harel, G. (1992). The Nature of the Process Conception of Function. En G. Harel y E. Dubinsky (eds.). The Concept of function: Aspects of epistemology and pedagogy. Mathematical Association of America. Notes Series, 25, 85-106.
Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensé, Annales de Didactique et de Sciences Cognitives 5, 37–65.
Even, R. G. Lappan y Fitzgerald, W. (1988). Pre-Service Teachers Conceptions of the Relationship Between Functions and Equations. Proceedings of the Annual Meeting of PME-NA, 283-289, Northern Ilinois University.
Filloy, E., Puig, L., y Rojano, T. (2008). El estudio teórico local del desarrollo de competencias algebraicas. Enseñanza de las Ciencias, 25(3), 327-342.
Galileo, Galilei. (1981). El ensayador. Buenos Aires: Editorial Aguilar.
Goldenberg, P. (1988). Mathematics, metaphors and human factors: mathematical, technical and pedagogical challenges in the graphical representation of functions. Journal of Mathematical Behaviours, 7(2), 135-174.
González, O. (2013). Conceptualizing and Assessing Secondary Mathematics Teachers’ Professional Competencies for Effective Teaching of Variability-Related Ideas. Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education, Turquía, 809-818.
Kleiner, I. (1989). Evolution of the function concept: A brief survey. The College Mathematics Journal, 20(4), 282-300.
Kleiner, I. (2012). Excursions in the History of Mathematics. Springer.
Kjeldsen, T.H. y Lützen J. (2015). Interaction between Mathematics and Physics: The History of the Concept of Function-Teaching with and About Nature of Mathematics. Science & Education, 24, 543-559.
Kjeldsen, T.H. y Petersen, H. P. (2014). Brindging History of the Concept of Function with Learning of Mathematics: Students´Meta-Discursive Rules, Concept Formation and Historical Awareness. Science & Education, 23, 29-45.
Kuzniak, A. (2013). Teaching and Learning Geometry and Beyond… Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education, Turquía, 33-49.
Lagrange, J.B. (2014). A Functional Perspective on the Teaching of Algebra: Current Challenges and the Contribution of Technology. The International Journal for Technology in Mathematics Education, 21(1), 3-10.
Larson, R.E., Hostetler, R. P. y Edwards, B. H. (1999). Cálculo (6ª ed.).
Madrid, España: McGraw-Hill.
Luzín, N. (1998). En: Ferreiros, J. (2003). Historia del concepto de función. La Gacete de la RSME, 6(21), 413-436.
Markovits, Z., Eylon, B. S., y Bruckheimer, M. (1988). Difficulties Students have with the Function Concept. En Coxford, A. F. y Shulte, A. P. (eds.). The Ideas of Algebra. Yearbook, 43-60. Reston, VA: NCTM.
Martínez, A. M. (1993). Knowledge and Development of Functions in a Technology-Enhanced High School Precalculus Class: A Case Study (Doctoral Dissertation). The Ohio State University.
Mesa, V. (2004). Characterizing Practices Associated with Functions in Middle School Textbooks: An Empirical Approach. Educational Studies in Mathematic, 56, 255–286.
Mouhayar, R.E. y Jurdak, M. (2016). Variation of Student Numerical and Figural Reasoning Approaches by Pattern Generalization Type, Strategy Use and Grade Level. International Journal of Mathematical Education in Science and Technology, 47(2), 197-215.
Monna A. F. (1973). The Concept of Function in the 19th and 20th Centuries, in Particular with Regard to the Discussions between Baire, Borel and Lebesgue. Archive for the History of Exact Science, 9, 57-84.
Moreno S. y Cuevas C. (2004). Interpretaciones erróneas sobre los conceptos de máximos y mínimos en el Cálculo Diferencial. Educación Matemática, 16(2), 93-104.
National Council of Teachers of Mathematics. (1989). Curriculum and Evaluation standards for school mathematics. Reston, VA: The Author.
National Council of Teachers of Mathematics. (2012). Professional Standards’ for Teaching Mathematics. Reston, VA: The Author.
National Research Council. (1989). Everybody counts: A report to the Nation on the Future of Mathematics Education. Washington, D. C: National Academy Press.
Nicholas, C.P. (1966). A dilemma in definition. American Mathematical Monthly, 73, 762-768.
Norman, A. (1992). Teacher’s Mathematical Knowledge on the Concept of Function. The Concept of function: Aspects of epistemology and pedagogy. Mathematical Association of America. Notes Series, 25, 215-232.
Pluvinage, F. y Cuevas, A. (2006). Un acercamiento didáctico a la noción de función. En Eugenio Filloy (ed.). Matemática Educativa, treinta años: Una mirada fugaz, una mirada externa y comprensiva, una mirada actual. México: Santillana, 141-167.
Programas. (2016). Programas educativos del nivel medio básico. En: http://www.gob.mx/sep/acciones-y-programas/secundaria-programas-de-estudio.
Rüting, D. (1984). Some definitions of the Concept of Function from John Bernoulli to N. Bourbaki. The Mathematical Intelligencer, 6 (4), 70-85.
Ruiz, H. (1993). Concepciones de los alumnos de secundaria sobre la noción de función: Análisis epistemológico y didáctico (Tesis de doctorado sin publicar). Departamento de Didáctica de la Matemática, Universidad de Granada, España.
Seeley, C. (2004). NCTM News Bulletin, September. Recuperado de http://www.nctm.org/News-and-Calendar/Messages-from-the-President/Archive/Cathy-Seeley/A-Journey-in-Algebraic-Thinking/.
Selden, A., y Selden (1992). Research Perspectives on Conceptions of Function summary and overview. The Concept of Function: Aspects of Epistemology and Pedagogy. Mathematical Association of America. Notes Series, 25, 1-21.
Sfard, A. (1989). Transition from operational to structural conception: the notion of function revisited. Proceedings of the Psychology of Mathematics Education, 3, 151-158. France.
Streefland, L. (2003). Learning from History for Teaching in the Future. Educational Studies in Mathematics, 54, 37-62.
Sierpinska, A. (1992). On Understanding the Notion of Function. The Concept of Function: Aspects of Epistemology and Pedagogy. Mathematical Association of America. Notes Series, 25, 23-58.
Spivak, M. (1967). Calculus. USA: Benjamin, W.A.
Stein, S.K. y Barcellos, A. (1995). Cálculo y Geometría Analítica (5ª ed.). Colombia: McGraw-Hill. Vol 1.
Stewart, J. (2001). Cálculo de una variable (4ª Ed.). México: International Thomson Editors.
Thomas, H. L. (1971). The Concept of Function. Annual Meeting of The American Educational Association, 4-7, New York.
Vargas, A.V., Reyes, R.A., Escalante, C.C. (2016). Ciclos de entendimiento de los conceptos de función y variación. Educación Matemática, 28(2), 59-83.
Vergel Ortega, M., Rincón Leal, O y Zafra, S. (2017). Influencia del curso precálculo en ecuaciones diferenciales y desarrollo del pensamiento variacional. En: Pedagogía y construcción de ámbitos en educación. Estados Unidos: Redipe, 646-660.
Vergel Ortega, M., Rincón Leal, O y Salazar, J.P. (2017). Perspectivas y pensamiento matemático desde las comunidades de aprendizaje. En: Prácticas Pedagógicas. Venezuela: Publicaciones científicas Universidad del Zulia, 1000-1013.
Vinner, S. y Dreyfus, T. (1989). Image and Definitions for the Concept of Function. Journal for Research in Mathematics Education, 20(4), 356-366.
Vrancken, S. Engler, A. Giampieri, M. y Müller, D. (2014). Estudio de las funciones en situaciones variacionales. Resultados de la implementación de una secuencia de actividades. Matemática, Educación e Internet, 15(1), 1-20. Recuperado de: http://www.tecdigital.itcr.ac.cr/revistamatematica/ARTICULOS_V15_N1_2014/RevistaDigital_Vrancken _V15_n1_2014/index.html
Youschkevitch, A. P. (1976). The Concept of Function up to the Middle of the 19th Century. Archive for the History of Exact Science, 16, 37-85.
Downloads
Published
Issue
Section
License
This journal provides free and immediate access to its content (https://creativecommons.org/licenses/by/4.0/legalcode#languages), under the principle that making research available to the public free of charge supports greater global knowledge exchange. This means that the authors transfer the Copyrights to the journal, so that the material can be copied and distributed by any means, as long as the authors’ recognition is maintained, and the articles are not commercially used or modified in any way.