Differences in geographical coordinates of minefields in Colombia according to their acquisition method

Authors

DOI:

https://doi.org/10.22335/rlct.v15i2.1742

Keywords:

humanitarian demining, global positioning systems, minefield, confirmed hazardous areas, geographic coordinates

Abstract

The scourge of explosive devices such as landmines, improvised explosive devices and unexploded ordnance, a product of armed conflicts in several countries around the world, has set a great precedent in the violation of fundamental human rights. In Colombia, the efforts of the government and NGOs to reduce their effects have succeeded in clearing minefields of more than 8 million square metres and destroying more than 7000 explosive devices. The standards for finding and clearing minefields (Confirmed Hazardous Areas - CHAs) include the determination of geographical coordinates (Latitude and Longitude) based on DATUM WGS84. However, the precision or accuracy in the location of these coordinates according to their capture method has been little studied and analysed, so this research investigates three methods for capturing coordinates on a simulated minefield (CHAs), finding interesting results: (1) The static method with dual frequency GNSS receivers presented a standard deviation of 4 millimetres corroborating a high accuracy, by Stop and Go it ranged between 4 and 19 millimetres with respect to the mean showing also a high accuracy, control by simple radiation confirmed obtaining a mean positional difference of 4.62 centimetres, (2) the capture of coordinates obtained with navigator yielded a mean positional difference of 219.28 centimetres, very similar to that obtained with (3) azimuths and distances without correction for a magnetic declination of 235.73; However, when corrected for magnetic declination, it gave a positional mean with correction of 53. 32, which showed a reliability of the method as long as the declination correction is applied and starting from a point with sufficient coordinate accuracy. 

Downloads

Download data is not yet available.

References

Alegria, A. C., Sahli, H., & Zimanyi, E. (2011). Application of density analysis for landmine risk mapping. Proceedings 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services, 223-228. https://doi.org/10.1109/ICSDM.2011.5969036

Alegria, A. C., Zimanyi, E., Cornelis, J., & Sahli, H. (2017). Hazard mapping of landmines and ERW using geo-spatial techniques. Journal of Remote Sensing & GIS, 06(02), 1-11. https://doi.org/10.4172/2469-4134.1000197

Arneitz, P., Draxler, A., Rauch, R., & Leonhardt, R. (2014). Orientation of churches by magnetic compasses? Geophysical Journal International, 198(1), 1-7. https://doi.org/10.1093/gji/ggu107

Correa Muñoz, N. A., & Cerón-Calderón, L. A. (2018). Precision and accuracy of the static GNSS system for surveying networks used in Civil Engineering. Ingeniería e Investigación, 38(1), 52–59. https://doi.org/10.15446/ing.investig.v38n1.64543

Descontamina Colombia. (2016a). Estándar nacional de estudios no técnicos. http://www.accioncontraminas.gov.co/Documents/0420_estandar_nacional_ENT.pdf

Descontamina Colombia. (2016b). Señalización, marcación y organización de sitio de trabajo. http://www.accioncontraminas.gov.co/AICMA/Documents/Estandares_Nacionales/190208-EN-Senalizacion_Marcacion.pdf

Descontamina Colombia. (2018). Reporte de AP-APC. http://www.accioncontraminas.gov.co/AICMA/Documents/Estandares_Nacionales/AnexoC_AP-APC_08022018_instructivo.pdf

Descontamina Colombia. (2021a). Eventos minas antipersonal en Colombia. https://www.datos.gov.co/Inclusi-n-Social-y-Reconciliaci-n/Eventos-Minas-Antipersonal-en-Colombia/sgp4-3e6k

Descontamina Colombia. (2021b). Resultados de las operaciones de desminado humanitario. http://www.accioncontraminas.gov.co/Estadisticas/Paginas/Estadisticas-DH.aspx

Dong-feng, R., Yun-peng, L., & Zhen-li, M. (2009). Test and analysis on the errors of GPS observation in mining field. Procedia Earth and Planetary Science, 1(1), 1233–1236. https://doi.org/https://doi.org/10.1016/j.proeps.2009.09.189

Environmental Systems Research Institute, Inc. (Esri). (2019). Acerca de las herramientas COGO en la estructura de parcela—Ayuda| ArcGIS for Desktop. https://desktop.arcgis.com/es/arcmap/10.3/manage-data/editing-parcels/about-cogo-tools-in-theparcel-fabric.htm

French, G. T. (1996). Understanding the GPS: An introduction to the global positioning system: What it is and how it works. Geo-Research. https://acortar.link/26iUMZ

Garmin. (2021). Garmin GPSMAP® 64s | Handheld GPS with Bluetooth®. https://buy.garmin.com/en-US/US/p/140022/pn/010-01199-10

Hasegawa, H., & Yoshimura, T. (2003). Application of dual-frequency GPS receivers for static surveying under tree canopies. Journal of Forest Research, 8(2), 103-110. https://doi.org/10.1007/s103100300012

Instituto Geográfico “Agustin Codazzi” (IGAC). (2018, Mayo 30). Resolución 643. “Por la cual se adoptan las especificaciones técnicas de levantamiento planimétrico para las actividades de barrido predial masivo y las especificaciones técnicas del levantamiento topográfico planimétrico para casos puntuales.” https://igac.gov.co/sites/igac.gov.co/files/normograma/resolucion_igac_643-18_adopta_especificaciones_tecnicas_levantamientos_planimetricos_y_topograficos_0.pdf

International Campaign to Ban Landmines – Cluster Munition Coalition (CBL-CMC). (2020). Landmine Monitor 2020. http://www.the-monitor.org/media/3168934/LM2020.pdf

Iribar, I. B., Muñoz, J. A. V., & Labajos, C. A. P. (2014). Latitude error in compass deviation: mathematical method to determine the latitude error in magnetic compass deviation. Polish Maritime Research, 21(3), 25-31. https://doi.org/10.2478/pomr-2014-0026

Kaiser, R., Spiegel, P. B., Henderson, A. K., & Gerber, M. L. (2003). The application of geographic information systems and global positioning systems in humanitarian emergencies: Lessons learned, programme implications and future research. Disasters, 27(2), 127-140. https://doi.org/10.1111/1467-7717.00224

Khamis, A., & ElGindy, A. (2012). Minefield mapping using cooperative multirobot systems. Journal of Robotics, 1-17. https://doi.org/10.1155/2012/698046

Kostelnick, J. C., Dobson, J. E., Egbert, S. L., & Dunbar, M. D. (2008). Cartographic Symbols for humanitarian demining. The Cartographic Journal, 45(1), 18-31. https://doi.org/10.1179/000870408X276585

Krtalić, A., Kuveždić Divjak, A., & Župan, R. (2019). Visualization of land mine danger, Svilaja Region (Croatia). Journal of Maps, 15(1), 21-29. https://doi.org/10.1080/17445647.2018.1552209

Laxminarayana, P., Harikrishna, S., Annapurna, R., & Reddy, D. C. (2004). Modelling of selective availability for latency effect compensation in WAAS. IETE Journal of Research, 50(2), 147–154. https://doi.org/10.1080/03772063.2004.11665499

López Cuervo, S. (1996). Topografía. Mundi-Prensa, 2nd ed. Biblioteca André Voisin. https://acortar.link/rgEty5

Meyer, T. H., & Hiscox, A. L. (2005). Position errors caused by GPS height of instrument blunders. Survey Review, 38(298), 262-273. https://doi.org/10.1179/sre.2005.38.298.262

Mikhail, E. M., & Gracie, G. (2007). Analysis & adjustment of survey measurements. Van Nostrand Reinhold Company. https://acortar.link/D9BE1F

Niu, X., Zhang, Q., Gong, L., Liu, C., Zhang, H., Shi, C., Wang, J., & Coleman, M. (2015). Development and evaluation of GNSS/INS data processing software for position and orientation systems. Survey Review, 47(341), 87-98. https://doi.org/10.1179/1752270614Y.0000000099

O’Brien, W. P. (2009). Measuring magnetic declination with a compass, virtual globes and a global positioning system. International Journal of Digital Earth, 2(1), 31-43. https://doi.org/10.1080/17538940802585515

Pardo Pedraza, D. (2020). Artefacto explosivo improvisado: Landmines and rebel expertise in Colombian warfare. Tapuya: Latin American Science, Technology and Society, 3(1), 472-492. https://doi.org/10.1080/25729861.2020.1804225

Paterson, T., Pound, B., & Ziaee, A. Q. (2013). Landmines and livelihoods in afghanistan: Evaluating the benefits of mine action. Journal of Peacebuilding & Development, 8(2), 73-90. https://doi.org/10.1080/15423166.2013.814969

Robinson, S. G., Weithman, C. E., Bellman, H. A., Prisley, S. P., Fraser, J. D., Catlin, D. H., & Karpanty, S. M. (2020). Assessing error in locations of conspicuous wildlife using Handheld GPS units and location offset methods. Wildlife Society Bulletin, 44(1), 163-172. https://doi.org/10.1002/wsb.1055

Schultz, C., Alegría, A. C., Cornelis, J., & Sahli, H. (2016). Comparison of spatial and aspatial logistic regression models for landmine risk mapping. Applied Geography, 66, 52-63. https://doi.org/10.1016/j.apgeog.2015.11.005

SIRGAS. (2018). Lista de estaciones sistema de referencia geocéntrico para las américas (SIRGAS). https://www.sirgas.org/en/stations/station-list/

Tomaštik, J., & Tunák, D. (2015). Compass measurement – still a suitable surveying Method in Specific Conditions. Geodesy and Cartography, 41(1), 31-40. https://doi.org/10.3846/20296991.2015.1011863

Torres, A., & Villate, E. (2001). Topografía. Editorial Escuela Colombiana de Ingeniería.

Vega Uribe, J. A., Sahli, H., & Gauthier Sellier, A. (2020). Antipersonnel landmines in the Colombian internal conflict: Implications for technology development. DYNA, 87(212), 144-154. https://doi.org/10.15446/dyna.v87n212.79271

Wyloe, G. P., & Featherstone, W. E. (1995). An evaluation of some stop-and-go Kinematic GPS survey options. Australian Surveyor, 40(3), 205-212. https://doi.org/10.1080/00050333.1995.10558535

Published

2023-07-28

Issue

Section

Research articles / Original articles

How to Cite

Differences in geographical coordinates of minefields in Colombia according to their acquisition method. (2023). Revista Logos Ciencia & Tecnología, 15(2), 33-48. https://doi.org/10.22335/rlct.v15i2.1742