Impact of the Implementation of a Solar Energy Irrigation System on Lemon Crops
DOI:
https://doi.org/10.22335/rlct.v14i2.1571Keywords:
irrigation system, solar power, global efficiency, evapotranspiration, lemonAbstract
This paper presents the dimensioning of an irrigation system applied to a lemon crop. Making use of solar power, it satisfied the Potential Evapotranspiration (PET) values of 4.31 mm/day and Consumptive Use (CU) of 1.85 mm/ha/day, whose experimental matrix is composed by three furrows of 57 trees with a requirement of 64.91 liters/tree/day, using dripping irrigation systems with a water discharge of 4 liters/hour. The study demonstrates, at a very significant level, that humidity concentrates at a depth of 15 cm. which is influenced by the sandy physical characteristics of the soil. Thus, for the irrigation water requirement, it is dimensioned a solar system obtaining a setting of 10 panels in series and 2
others in parallel, for a total of 20 as a whole, a capacity inverter to power a 2HP pump and a house with an average consumption of 1.5 kWp. The global efficiency of the system was registered in the range of 10 and 14%, and the maximum output power of the photovoltaic system was reached between the 10:00 and 14:00 hours with an 84% of the total capacity installed (5.2 kWp).
Downloads
References
Abella, M. A., & Chenlo Romero, F. (s.f.). Sistemas de Bombeo Fotovoltaico. [Trabajo de grado de Maestría, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas]. CIEMAT.
Adaramola, M. S., & Vågnes, E. E. (2015). Preliminary Assessment of a Small-Scale Rooftop PV-Grid Tied in Norwegian Climatic Conditions. Energy Conversion and Management, (90), 458-465. https://doi.org/10.1016/j.enconman.2014.11.028
Aliyua, M., Hassana, G., Saida, S. A., Siddiquic, M. U., Alawamid, A. T., & Elamind, I. M. (2018). A Review of solar-Powered Water Pumping Systems. Renewable and Sustainable Energy Reviews, (87), 61-76. https://doi.org/10.1016/j.rser.2018.02.010
Allen, R., Pereira, L., & Raes, D. (2006). Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos. FAO.
Ark Kumar, K., Sundareswaran, K., & Venkateswaran, P. (2014). Performance Study on a Grid Connected 20 kWp Solar Photovoltaic Installation in an Industry in Tiruchirappalli (India). Energy for Sustainable Development, (23), 294-304. https://doi.org/10.1016/j.esd.2014.10.002
Ayompe, L., Duffy, A., McCormack, S., & Conlon, M. (2011). Measured Performance of a 1.72 kW Rooftop Grid Connected Photovoltaic System in Ireland. Energy Conversion and Management, 52(2), 816-825. https://doi.org/10.1016/j.enconman.2010.08.007
Barbosa Pinzón, A. (2010). Agua potable para la humanidad y su conflicto mundial un asunto de la alta gerencia. [Trabajo de grado de Especialización, Universidad Militar Nueva Granada]. RI UMNG. https://repository.unimilitar.edu.co/handle/10654/3702
Barlow, R., McNeils, B., & Derrick, A. (1991). Status and Experience of Solar PV Pumping in Developing Countries. En A. Luque, G. Sala, W. Palz, G. Santos & P. Helm (Eds.), Tenth E.C. Photovoltaic Solar Energy Conference (pp. 1143-1146). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3622-8_292
Bedoya, M., & Ángeles, V. (2017). Comparación de métodos para estimar pérdidas localizadas en riego por goteo. Tecnologías y Ciencias del Agua, 3(4), 117-125. http://dx.doi.org/10.24850/j-tyca-2017-04-07
Benlarbi, K., Mokrani, L., & Nait-Said, M. S. (2004). A Fuzzy Global Efficiency Optimization of a Photovoltaic Water Pumping System. Solar Energy, 77(2), 203-216. https://doi.org/10.1016/j.solener.2004.03.025
Burger, B., & Rüther, R. (2006). Inverter Sizing of Grid-Connected Photovoltaic Systems in the Light of Local Solar Resource Distribution Characteristics and Temperature. Solar Energy, 80(1), 32-45. https://doi.org/10.1016/j.solener.2005.08.012
Caamaño Martín, E. (1998). Edificios fotovoltaicos conectados a la red eléctrica: Caracterización y análisis. [Tesis doctoral, Universidad Politécnica de Madrid]. Archivo Digital UPM. http://oa.upm.es/1322/1/ESTEFANIA_CAAMANO_MARTIN.pdf
Campana, P. E., Li, H., & Yan, J. (2013). Dynamic Modelling of a PV Pumping System with Special Consideration on Water Demand. Applied Energy, (112), 635-645. https://doi.org/10.1016/j.apenergy.2012.12.073
Campana, P. E., Li, H., Zhang, J., Zhang, R., Liu, J., & Yan, J. (2015). Economic Optimization of Photovoltaic Water Pumping Systems for Irrigation. Energy Conversion and Management, (95), 32-41. https://doi.org/10.1016/j.enconman.2015.01.066
Carrelo, I. B., Hogan Almeida, R., Narvarte, L., Martinez-Moreno, F., & Carrasco, L. M. (2020). Comparative Analysis of the Economic Feasibility of Five Large-power Photovoltaic Irrigation Systems in the Mediterranean Region. Renewable Energy, (14). 2671-2682. https://doi.org/10.1016/j.renene.2019.08.030
Carroquino, J., Dufo-López, R., & Bernal-Agustín, J. L. (2015). Sizing of off-grid Renewable Energy Systems for Drip Irrigation in Mediterranean Crops. Renewable Energy, (76), 566-574. https://doi.org/10.1016/j.renene.2014.11.069
Díez-Mediavilla, Alonso-Tristán, C., Rodríguez-Amigo, M., García-Calderón, T., & Dieste-Velasco, M. (2012). Performance Analysis of PV Plants: Optimization for Improving Profitability. Energy Conversion and Management, 54(1), 17-23. https://doi.org/10.1016/j.enconman.2011.09.013
Doll, C., & Pachauri, S. (2010). Estimating Rural Populations without Access to Electricity in Developing Countries through Night-time Light Satellite Imagery. Energy Policy, 38(10), 5661-5670. https://doi.org/10.1016/j.enpol.2010.05.014
E.U. (s.f.). Experimentation of Pv water pumps in view of their optimization. Final report.
International Energy Agency (2001). Technical Brochure N° 152 Solar Pumping in India. Caddet, Renewable Energy. https://www.yumpu.com/en/document/read/39509094/solar-pumping-in-india-caddet-renewable-energy
European Commission. (2010). Photovoltaics in 2010. European Commission Directorate-General for Energy. Fronius. (2020). Productos y soluciones. Fronius. https://www.fronius.com/es/latin-america
Gao, X., Liu, J., Zhang, J., Yan, J., Bao, S., Xu, H., & Tao, Q. (2013). Feasibility Evaluation of Solar Photovoltaic Pumping Irrigation System Based on Analysis of Dynamic Variation of groundwater Table. Applied Energy, (105), 182-193. https://doi.org/10.1016/j.apenergy.2012.11.074
Gualteros, S., & Rousse, D. R. (2021). Solar Water Pumping Systems: A Tool to Assist in Sizing and Optimization. Solar Energy, (225), 382-398. https://doi-org.ezproxy.unibague.edu.co/10.1016/j.solener.2021.06.053
Hamidat, A., & Benyoucef, B. (2009). Systematic Procedures for Sizing Photovoltaic Pumping System, Using Water Tank Storage. Energy Policy, (37), 1489-1501. https://doi.org/10.1016/j.enpol.2008.12.014
Instituto Colombiano de Normas Técnicas y Certificación (1998). NTC 2050. Código Eléctrico Colombiano. ICONTEC. https://www.icontec.org/lanzamiento-codigo-electrico-colombiano-ntc-2050/
Instituto de Hidrología, Meteorología y Estudios Ambientales (2020). Tiempo y clima. IDEAM. http://www.ideam.gov.co/web/tiempo-y-clima
INTI. (2017). Conozca nuestros productos. INTI. https://intipv.com/es/
Islam, S., Woyte, A., Belmans, R., & Nijs, J. (2003). Undersizing the Inverter for Grid-connection - Where is the optimum? En R. Hezel (Coord.). The 18th Symposium Photovoltaische Solarenergie, (pp. 414-419). Ostbayerisches Technologie-Transfer-Institut.
Jaramillo Robledo, A. (2006). Evapotranspiración de referencia en la región Andina de Colombia. Cenicafé, 57(4), 288-298.
López, J., Hernández Abreu, J., Pérez Regalado, A., & González Hernández, J. (1992). Riego localizado. MAPA-IRYDA.
López-Luque, R., Martínez, J., Reca, J., & Ruiz, R. (2017). Análisis de viabilidad y gestión del riego en invernaderos mediterráneos con energía solar fotovoltaica. Ribagua, 1-10. https://doi.org/10.1080/23863781.2017.1332806
López-Luque, R., Reca, J., & Martínez, J. (2015). Optimal Design of a standalone Direct Pumping Photovoltaic System for Deficit Irrigation of Olive Orchards. Applied Energy, (149), 13-23. https://doi.org/10.1016/j.apenergy.2015.03.107
Macêdo, W. N., & Zilles, R. (2007). Operational Results of Grid‐connected Photovoltaic System with Different Inverter’s Sizing Factors (ISF). Progress in Photovoltaics: Research and Applications, (15), 337-352. https://doi.org/10.1002/pip.740
Martínez-Gimeno, M. A., Bonet, L., Provenzano, G., Badal, A., Intrigliolo, D. S., & Ballester, C. (2018). Assessment of Yield and Water Productivity of Clementine Trees under Surface and Subsurface Drip Irrigation. Agricultural Water Management, (206), 209-216. https://doi.org/10.1016/j.agwat.2018.05.011.
Mérida, A., Fernández García, I., Camacho Poyato, E., Montesinos Barrios, P., & Rodríguez-Díaz, J. A. (2018). Coupling Irrigation Scheduling with Solar Energy Production in a Smart irrigation Management System. Journal of Cleaner Production, (175), 670-682. https://doi.org/10.1016/j.jclepro.2017.12.093
Mpholo, M., Nchaba, T., & Monese, M. (2015). Yield and Performance Analysis of the First Grid-connected Solar Farm at Moshoeshoe I International Airport, Lesotho. Renewable Energy, (81), 845-852. https://doi.org/10.1016/j.renene.2015.04.001
Natural Resources Canada. (21 de febrero de 2019). RETScreen. Natural Resources Canada. https://www.nrcan.gc.ca/energy/retscreen/7465
Okakwu, I., Alayande, A., Akinyele, D., Olabode, O., & Akinyemi, J. (2022). Effects of Total System Head and Solar Radiation on the Techno-economics of PV Groundwater Pumping irrigation System for Sustainable Agricultural Production. Scientific African, (16), 1-15. https://doi.org/10.1016/j.sciaf.2022.e01118
Padmavathi, K., & Arul Daniel, S. (2013). Performance Analysis of a 3 MWp Grid Connected Solar Photovoltaic Power Plant in India. Energy for Sustainable Development, 17(6), 615-625. https://doi.org/10.1016/j.esd.2013.09.002
Pedrollo (2020). 4SR Electrobombas sumergidas de 4”. Pedrollo. https://www.pedrollo.com/es/4sr-electrobombas-sumergidas-de-4/150
Pizarro, F. (1996). Riegos localizados de alta frecuencia. Mundi – Prensa.
Posadillo, R., & López-Luque, R. (2008). A Sizing Method for Stand-alone PV Installations with Variable Demand. Renewable Energy, 33(5), 1049-1055. https://doi.org/10.1016/j.renene.2007.06.003
Programa de las Naciones Unidas para el Medio Ambiente (2003). Informe Distribución del Agua de la Tierra. PNUMA. https://www.un.org/esa/sustdev/sdissues/water/WWDR-spanish-129556s.pdf
Qoaider, L., & Steinbrecht, D. (2010). Photovoltaic Systems: A Cost Competitive Option to Supply Energy to off-grid Agricultural Communities in Arid Regions. Applied Energy, 87(2), 427-435. https://doi.org/10.1016/j.apenergy.2009.06.012
Rabiul Islam, M. S., Pejush, & Kumar Ghosh, S. (2017). Prospect and Advancement of Solar Irrigation in Bangladesh: A Review. Energy Reviews, (77), 406-422. https://doi.org/10.1016/j.rser.2017.04.052
Reca, J., García-Manzano, A., & Martínez, J. (2015). Optimal Pumping Scheduling Model Considering Reservoir Evaporation. Agricultural Water Management, (148), 250-257. https://doi.org/10.1016/j.agwat.2014.10.008
Reca, J., Torrente, C., López-Luque, R., & Martínez, J. (2016). Feasibility Analysis of a Standalone Direct Pumping Photovoltaic System for Irrigation in Mediterranean Greenhouses. Renewable Energy, (85), 1143-1154. https://doi.org/10.1016/j.renene.2015.07.056
Simens Solar Industries. (1996). Photovoltaic Techonogy and systems desing, training manual. Simens Solar Industries.
Tan, C., Min, Wang, J., Geng, S., Niu, D., & Tan, Z. (2022). Feasibility Study on the Construction of Multi-energy Complementary Systems in Rural Areas—Eastern, Central, and Western Parts of China are Taken as Examples. Energy, 249(15), 1-21. https://doi.org/10.1016/j.energy.2022.123571
The American Society of Mechanical Engineers (2001). Philippines, Villages to Receive Electricity for the First Time. ASME https://www.modernpowersystems.com/news/newsphilippine-villages-to-receive-electricity-for-first-time
Unidad de Planeación Minero Energética (s.f.). Mapas de Brillo Solar. UPME. http://atlas.ideam.gov.co/visorAtlasRadiacion.html
Valverde Granja, A. (2017). Implementação de uma rede experimental de geração distribuída (GD) com energia solar: estudo de caso da Universidade de Ibagué - Colômbia. [Tesis doctoral, Universidade Estadual Paulista Julio de Mesquita]. Repositorio Institucional UNESP. https://repositorio.unesp.br/handle/11449/151001
Vargas Galván, G. A., Gil-Baena, S. A., Díaz-Figueroa, J. E., & Otálora-Dueñas, L. M. (2019). Aprovechamiento de la energía solar para el Área Académica de la Escuela de Aviación Policial mediante un sistema fotovoltaico con conexión a red. Revista Logos Ciencia & Tecnología, 11(2), 47-59. https://doi.org/10.22335/rlct.v11i2.446
Yahyaoui, I., Chaabene, M., & Tadeo, F. (2013). An Algorithm for Sizing Photovoltaic Pumping Systems for Tomatoes Irrigation. M. Sánz, I. Colak, & F. Kurokawa (Coords.), International Conference on Renewable Energy Research and Applications (ICRERA), (pp. 1089-1095). https://doi.org/10.1109/ICRERA.2013.6749915
Yahyaoui, I., Sallem, S., Kamoun, M., & Tadeo, F. (2014). A Proposal for off-grid Photovoltaic Systems with Non-controllable Loads Using Fuzzy Logic. Energy Convers Manage, (78), 835-842. https://doi.org/10.1016/j.enconman.2013.07.091
Yahyaoui, I., Yahyaoui, A., Chaabene, M., & Tadeo, F. (2016). Energy Management for a Stand-alone Photovoltaic- wind System Suitable for Rural Electrification. Sustainable Cities and Society, (25), 90-101. https://doi.org/10.1016/j.scs.2015.12.002
Yu, Y., Liu, J., Wang, H., & Liu, M. (2011). Assess the Potential of Solar Irrigation Systems for Sustaining Pasture Lands in Arid Regions – A Case Study in Northwestern China. Applied Energy, (88), 3176-3182. https://doi.org/10.1016/j.apenergy.2011.02.028
Zavala, V., López-Luque, R., Reca, J., Martínez, J., & Lao, M. T. (2020). Optimal Management of a Multisector Standalone Direct Pumpig Photovoltaic Irrigation System. Applied Energy, (260). https://doi.org/10.1016/j.apenergy.2019.114261
Zhang, J., Liu, J., Campana, P. E., Zhang, R., Yan, J., & Gao, X. (2014). Model of Evapotranspiration and Groundwater Level Based on Photovoltaic Water Pumping System. Applied Energy, (136), 1132-1137. https://doi.org/10.1016/j.apenergy.2014.05.045
Downloads
Published
Versions
- 2022-09-27 (3)
- 2022-08-31 (2)
- 2022-06-30 (1)
Issue
Section
License
Copyright (c) 2022 Revista Logos Ciencia & Tecnología
This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides free and immediate access to its content (https://creativecommons.org/licenses/by/4.0/legalcode#languages), under the principle that making research available to the public free of charge supports greater global knowledge exchange. This means that the authors transfer the Copyrights to the journal, so that the material can be copied and distributed by any means, as long as the authors’ recognition is maintained, and the articles are not commercially used or modified in any way.