Private Mobile Broadband and its Interaction with Police Voice Networks
DOI:
https://doi.org/10.22335/rlct.v14i1.1436Keywords:
Frequency allocation, mobile communication, telecommunications network, mobile phone, data transmissionAbstract
Mission-critical communications used worldwide for public safety have been based on narrow band solutions, framed in the different protocols included in Land Mobile Radio (LMR), such as APCO 25, used by the National Police. Although these technologies have been of great importance and have a fairly consolidated implementation maturity for reliable voice transmission, they have limitations for the transmission of data such as images and videos, making it necessary to take advantage of technology such as Long Term Evolution (LTE). In view of this need, it was carried out a technical scientific literature review, verifying the state of the art in several databases; likewise inclusion and exclusion criteria were determined for the study, thanks to which it was possible to identify that today there is no technological capacity to develope a LTE network for public safety; based on the above the need for a technological implementation that guarantees the coexistence of the two LMR and LTE neworks was identified , taking advantage of the benefits of each one of them in a sum that increases the technological capabilities in the police service.
Downloads
References
GPP. (2013). Public Safety. 3GPP a Global Initiative. https://www.3gpp.org/news-events/3gpp-news/1455-Public-Safety;
GPP. (2020). 3GPP a global iniative. About 3GPP. https://www.3gpp.org/about-3gpp
Abdulrahman, Y. (2020). Public Safety Communications Evolution. In IEEE Wiley Telecommunications eBooks (pp. 227–244). Wiley. https://doi.org/10.1002/9781119580157.ch14
ANE. (2020, April 1). Resolucion 105 de 2020. Agencia Nacional Del Espectro. https://normograma.mintic.gov.co/mintic/docs/resolucion_ane_0105_2020.htm
Astély, D., Dahlman, E., Furuskär, A., Jading, Y., Lindström, M., & Parkvall, S. (2009). LTE: The evolution of mobile broadband. IEEE Communications Magazine, 47(4), 44–51. https://doi.org/10.1109/MCOM.2009.4907406
Barbara, K. (2004). Procedures for Performing Systematic Reviews. Keele University Technical Report, 33.
Camps-Mur, D., Garcia-Saavedra, A., & Serrano, P. (2013). Device-to-device communications with WiFi direct: Overview and experimentation. IEEE Wireless Communications, 20(3), 96–104. https://doi.org/10.1109/MWC.2013.6549288
Chi, K., Du, X., Yin, G., Wu, J., Guizani, M., Han, Q., & Yang, Y. (2020). Efficient and fair Wi-Fi and LTE-U coexistence via communications over content centric networking. Future Generation Computer Systems, 112, 297–306. https://doi.org/10.1016/j.future.2020.05.026
Choi, S. W., Song, Y. S., Shin, W. Y., & Kim, J. (2019). A feasibility study on mission-critical push-to-talk: Standards and implementation perspectives. IEEE Communications Magazine, 57(2), 81–87. https://doi.org/10.1109/MCOM.2018.1700886
Comisión de Regulación de Comunicaciones. (2016). Resolucion 4972 de 2016. Sistema Único de Información Normativa. http://www.suin-juriscol.gov.co/viewDocument.asp?ruta=Resolucion/30038120
Congreso de la Republica. (2009). Ley 1341 de 2009. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=36913
Constitución Política de Colombia. (2020, September 13). Leyes desde 1992 - Vigencia expresa y control de constitucionalidad [CONSTITUCION_POLITICA_1991]. Secretaria Senado. http://www.secretariasenado.gov.co/senado/basedoc/constitucion_politica_1991.html#1
Departamento Nacional de Planeacion. (2006). Implementacion Del Sistema Integrado De Emergencias Y Seguridad-Sies De Colombia - Documento Conpes 3437. 0–43.
Doumi, T., Dolan, M. F., Tatesh, S., Casati, A., Tsirtsis, G., Anchan, K., & Flore, D. (2013). LTE for public safety networks. IEEE Communications Magazine, 51(2), 106–112. https://doi.org/10.1109/MCOM.2013.6461193
Engels, A., Reyer, M., Xu, X., Mathar, R., Zhang, J., & Zhuang, H. (2013). Autonomous self-optimization of coverage and capacity in LTE cellular networks. In IEEE Transactions on Vehicular Technology (Vol. 62, Issue 5, pp. 1989–2004). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/TVT.2013.2256441
ETSI. (2021). ETSI - THIRD GENERATION PARTNERSHIP PROJECT. THIRD GENERATION PARTNERSHIP PROJECT (3GPP). https://www.etsi.org/committee/3gpp
FCC. (2016, February 3). Narrowbanding Overview. Federal Communications Commission. https://www.fcc.gov/narrowbanding-overview
Feng, D., Lu, L., Yi, Y. W., Li, G. Y., Feng, G., & Li, S. (2013). Device-to-device communications underlaying cellular networks. IEEE Transactions on Communications, 61(8), 3541–3551. https://doi.org/10.1109/TCOMM.2013.071013.120787
Ferrús, R., & Sallent, O. (2014). Extending the LTE/LTE-a business case: Mission- and business-critical mobile broadband communications. IEEE Vehicular Technology Magazine, 9(3), 47–55. https://doi.org/10.1109/MVT.2014.2333695
Ferrús, R., & Sallent, O. (2015a). Public Protection and Disaster Relief Communications. Mobile Broadband Communications for Public Safety, 1–48. https://doi.org/10.1002/9781118831243.CH1
Ferrús, R., & Sallent, O. (2015b). Radio Spectrum for PPDR Communications. Mobile Broadband Communications for Public Safety, 257–315. https://doi.org/10.1002/9781118831243.CH6
Ferrús, R., Sallent, O., Baldini, G., & Goratti, L. (2013). LTE: The technology driver for future public safety communications. IEEE Communications Magazine, 51(10), 154–161. https://doi.org/10.1109/MCOM.2013.6619579
FirstNet. (2020). FirstNet Push-to-Talk: LMR Interoperability Option.
FirstNet - Nationwide Network for Public Safety by Public Safety. (2021). FIRSTNET. https://www.firstnet.com/power-of-firstnet.html
Griffith, D., Rouil, R., Izquierdo, A., & Golmie, N. (2015). Measuring the resiliency of cellular base station deployments. 2015 IEEE Wireless Communications and Networking Conference, WCNC 2015, 1625–1630. https://doi.org/10.1109/WCNC.2015.7127711
Hallahan, R., & Peha, J. M. (2010). Quantifying the costs of a nationwide public safety wireless network. Telecommunications Policy, 34(4), 200–220. https://doi.org/10.1016/j.telpol.2010.01.002
Hallahan, R., & Peha, J. M. (2011). The business case of a network that serves both public safety and commercial subscribers. Telecommunications Policy, 35(3), 250–268. https://doi.org/10.1016/j.telpol.2010.12.006
Homeland security. (2012). Nationwide Public Safety Broadband Network. June.
Infobae. (2021). Cuáles son las marcas de celulares más vendidas. https://www.infobae.com/america/tecno/2021/02/23/cuales-son-las-marcas-de-celulares-mas-vendidas/
ITU. (2015). Resolution 646 (Rev.WRC-15). https://www.itu.int/oth/R0A0600001A/es
Jackson, D. (2020, November 20). Public safety transitioning to LTE-based solutions, but PTT timetable still unclear, speakers say – Urgent Comms. https://urgentcomm.com/2020/11/20/public-safety-transitioning-to-lte-based-solutions-but-voice-timetable-still-unclear-speakers-say/
Jarwan, A., Sabbah, A., Ibnkahla, M., & Issa, O. (2019). LTE-Based Public Safety Networks: A Survey. IEEE Communications Surveys and Tutorials, 21(2), 1165–1187. https://doi.org/10.1109/COMST.2019.2895658
Kumbhar, A., & Guvenc, I. (2015). A comparative study of Land Mobile Radio and LTE-based public safety communications. Conference Proceedings - IEEE SOUTHEASTCON, 2015-June(June). https://doi.org/10.1109/SECON.2015.7132951
Kuwadekar, A., & Al-Begain, K. (2014). A real world evaluation of Push to Talk service over IMS and LTE for public safety systems. International Conference on Wireless and Mobile Computing, Networking and Communications, 365–370. https://doi.org/10.1109/WiMOB.2014.6962196
Lee, S. (2011). Consolidation of public safety wireless networks: An options-based economic analysis of numerous scenarios. Telecommunications Policy, 35(2), 91–101. https://doi.org/10.1016/j.telpol.2010.12.015
Luu, C., Syed, D., Gaither, M., & Contestabile, J. (2018). Evaluation of Datacasting and LTE Integration for Public Safety and First Responder Applications. 2018 IEEE International Symposium on Technologies for Homeland Security, HST 2018, 1–7. https://doi.org/10.1109/THS.2018.8574138
Magnnusen, W. (2018). The Importance of LTE Interoperability. MissionCritical Communications, 24–28. MCCmag.com
Marojevic, V., Rao, R. M., Ha, S., & Reed, J. H. (2018). Performance analysis of a mission-critical portable LTE system in targeted RF interference. IEEE Vehicular Technology Conference, 2017-September, 1–6. https://doi.org/10.1109/VTCFall.2017.8288187
Martínez, A. S. (2016). Comunicaciones Críticas de Emergencia Interoperables, Seguras y Globales. Linkedin. https://es.linkedin.com/pulse/comunicaciones-críticas-de-emergencia-interoperables-aitor
Martinez, D., & P. Monnes. (2018, April). LMR/LTE Interworking Standarsds. Mission Critical Communications, 14–20. https://www.rrmediagroup.com/Features/FeaturesDetails/FID/831/eLearning/eLearning/Digital-Events/
Masood, A., Scazzoli, D., Sharma, N., Moullec, Y. Le, Ahmad, R., Reggiani, L., Magarini, M., & Alam, M. M. (2020). Surveying pervasive public safety communication technologies in the context of terrorist attacks. Physical Communication, 41, 1–23. https://doi.org/10.1016/j.phycom.2020.101109
MinTic. (2015). Decreto 2434 del 17 de diciembre de 2015. https://www.mintic.gov.co/portal/inicio/14455:Decreto-2434-del-17-de-diciembre-de-2015
MinTic. (2020). Uso del espectro radioeléctrico para servicios de seguridad. http://www.mintic.gov.co/portal/604/w3-article-146317.html
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Antes, G., Atkins, D., Barbour, V., Barrowman, N., Berlin, J. A., Clark, J., Clarke, M., Cook, D., D’Amico, R., Deeks, J. J., Devereaux, P. J., Dickersin, K., Egger, M., Ernst, E., Gøtzsche, P. C., … Tugwell, P. (2019). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS MEDICINE, 6(7), 1–6.
Olbrich, E. (2019). Why MCPTT Interoperability Is Important. MissionCritical Communications, 60–65. https://www.rrmediagroup.com/eLearning/frmSignin/MCID/202
Ovando, C., Pérez, J., & Moral, A. (2015). LTE techno-economic assessment: The case of rural areas in Spain. Telecommunications Policy, 39(3–4), 269–283. https://doi.org/10.1016/j.telpol.2014.11.004
Pinson, M. (2017). Gaps in public - Safety Cameras. MissionCritical Communications, 30–35. MCCmag.com
Prasad, A., Maeder, A., Samdanis, K., Kunz, A., & Velev, G. (2016). Enabling group communication for public safety in LTE-Advanced networks. Journal of Network and Computer Applications, 62, 41–52. https://doi.org/10.1016/j.jnca.2015.10.014
Raza, A. (2016). LTE network strategy for Smart City Public Safety. 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies, EmergiTech 2016, 34–37. https://doi.org/10.1109/EmergiTech.2016.7737306
Rouil, R., Garey, W., Gentile, C., Golmie, N., & Schwinghammer, P. (2018). Increasing public safety broadband network resiliency through traffic control. Digital Communications and Networks, 4(1), 48–57. https://doi.org/10.1016/j.dcan.2017.09.005
Saafi, S., Hosek, J., & Kolackova, A. (2020). Cellular-enabled Wearables in Public Safety Networks: State of the Art and Performance Evaluation. International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, 2020-October, 201–207. https://doi.org/10.1109/ICUMT51630.2020.9222459
Solís Tulande, E. (2017). Análisis de viabilidad técnica y funcional de una red de protección pública y gestión de desastres bajo la tecnología (eLTE) para la policía nacional en la ciudad de Villavicencio. Universidad Santo Tomas.
The World Radiocommunicacion Conference. (2012). Studies to support broadband public protection and disaster relief. 1–2. https://www.itu.int/dms_pub/itu-r/oth/0c/0a/R0C0A00000A0017PDFE.pdf
Urrutia, G., & Bonfill, X. (2010). Declaracion PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y mataanálisis. In Medicina Clínica (Vol. 135, Issue 11, pp. 507–511). http://es.cochrane.org/sites/es.cochrane.org/files/public/uploads/PRISMA_Spanish.pdf
Voss Britta. (2019). The Critical Need for Data Interoperability. MissionCritical Communications, 52–59. https://www.rrmediagroup.com/eLearning/eLearning-Registration/MCID/202/userID/9827
Yu, W., Xu, H., Nguyen, J., Blasch, E., Hematian, A., & Gao, W. (2018). Survey of Public Safety Communications: User-Side and Network-Side Solutions and Future Directions. In IEEE Access (Vol. 6, pp. 70397–70425). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2018.2879760
Zhang, B., Li, Y., Jin, D., & Han, Z. (2016). Network Science Approach for Device Discovery in Mobile Device-to-Device Communications. IEEE Transactions on Vehicular Technology, 65(7), 5665–5679. https://doi.org/10.1109/TVT.2015.2453234
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Revista Logos Ciencia & Tecnología
This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides free and immediate access to its content (https://creativecommons.org/licenses/by/4.0/legalcode#languages), under the principle that making research available to the public free of charge supports greater global knowledge exchange. This means that the authors transfer the Copyrights to the journal, so that the material can be copied and distributed by any means, as long as the authors’ recognition is maintained, and the articles are not commercially used or modified in any way.