Generation of Particulate Matter Pollution Maps through Embedded Systems: Case Study in Cúcuta (Colombia)

Authors

DOI:

https://doi.org/10.22335/rlct.v13i3.1433

Keywords:

Air pollution, embedded system, Intensity maps

Abstract

Currently, environmental pollution is a high impact problem, as multiple pollutants and mainly particulate matter can become harmful to health and even deadly, so the main government agencies have established strategies for monitoring and control through fixed stations. For this reason, the characterization of particulate matter in the Trigal del Norte neighborhood of the city of Cúcuta is developed by means of a mobile system adaptable to multiple structures, incorporating a graphic interface connected to the network for the drafting of pollution intensity maps. The proposed method has an exploratory/descriptive scope with a qualitative and quantitative approach, applied through an experimental design based on identification and selection of technologies, design and assembly of the electronic circuit, software development and technological integration. As a result, a compact system was obtained that presents intensity maps and behavior graphs, where it is observed that the data obtained from the measurement process present levels of contamination by PM2.5 and PM10 with values of 19.95 μg/m3 and 21.61μg/m3 μg/m3 , respectively, which comply with the maximum permissible levels according to Resolution 2254 of the Ministry of Environment and Sustainable Development of Colombia.

Downloads

Download data is not yet available.

Author Biographies

  • Jeison Eduardo Eslava Pedraza, Universidad Francisco de Paula Santander, Cúcuta, Colombia

    Ingeniero Electrónico.

  • Franyer Adrian Martínez Sarmiento, Universidad Francisco de Paula Santander, Cúcuta, Colombia

    Ingeniería Electrónica.

  • Ángelo Joseph Soto Vergel, Universidad Francisco de Paula Santander, Cúcuta, Colombia

    Ingeniero Electrónico. Magíster en Educación Matemática.

  • Edwin José Vera Rozo, Universidad Francisco de Paula Santander, Cúcuta, Colombia

    Ingeniero Electrónico. Magister en Formulación de proyectos en Ingeniería.

  • Dinael Guevara Ibarra, Universidad Francisco de Paula Santander, Cúcuta, Colombia

    Ingeniero Eléctrico. Doctorado en Ingeniería.

References

Borbet, T. C., Gladson, L. A., & Cromar, K. R. (2018). Assessing air quality index awareness and use in Mexico City. BMC Public Health, 18(1), 1-10. https://doi.org/10.1186/s12889-018-5418-5

Cárdenas, O. (2010). Transductores industriales. T. G. U. ULA Rectorado, Ed. https://sites.google.com/site/clasesinstrumentacion/capitulo1

Carrillo, M. G., & Herranz, M. S. M. (2005). Interfaces gráficas en Java. Editorial Universitaria Ramón Areces. https://books.google.com.co/books?id=AWGnDAAAQBAJ

Clément, P. (2018). Python y Raspberry Pi: aprenda a desarrollar en su nano-ordenador. Ediciones A. Sanchez Conejo. https://books.google.es/books?hl=es&lr=&id=vN9PnBbJTCUC&oi=fnd&pg=PA7&dq=Python+y+Raspberry+Pi+libro&ots=aj6XEM1dYm&sig=9Wnq1Yj4h4llO1IZ1hgykvWpIB0#v=onepage&q&f=false

Delgado, L., Feliciano, M., Frare, L., Furst, L., Leitão, P., & Igrejas, G. (2020). Construction and Validation of a Low-Cost System for Indoor Air Quality Measurements in Livestock Facilities. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 315 LNICST, 232-245. https://doi.org/10.1007/978-3-030-5694-8_18

Fernández, M. A. A. (2019). Hablemos Embebido: Guía para Diseñar Sistemas Embebidos. Asociación Mexicana de Software Embebido. https://books.google.com.co/books?id=BcxlzQEACAAJ

Green, J., & Sánchez, S. (2013). La calidad del aire en América Latina: Una visión panorámica. Clean Air Institute, 36. https://www.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/contaminacion_atmosferica/La_Calidad_del_Aire_en_América_Latina.pdf

Huertas, J. I., Huertas, M. E., Izquierdo, S., & González, E. D. (2012). Air quality impact assessment of multiple open pit coal mines in northern Colombia. Journal of Environmental Management, 93(1), 121-129. https://doi.org/10.1016/j.jenvman.2011.08.007

Instituto de Hidrología Meteorología y Estudios Ambientales - IDEAM. (2018). Carácterísticas climatológicas de ciudades principales y municipios turísticos. Instituto de Hidrología, Meteorología y Estudios Ambientales, 48. http://www.ideam.gov.co/documents/21021/418894/Características+de+Ciudades+Principales+y+Municipios+Turísticos.pdf/c3ca90c8-1072-434a-a235-91baee8c73fc%0A

Ilizarbe-Gonzáles, Gina Mishel, Rojas-Quincho, Jhojan Pool, Cabello-Torres, Rita Jaqueline, Ugarte-Alvan, Carlos Alfredo, Reynoso-Quispe, Patricia, & Valdiviezo-Gonzales, Lorgio Gilberto. (2020). Chemical characteristics and identification of PM10 sources in two districts of Lima, Peru. DYNA, 87(215), 57-65, 2021. https://doi.org/10.15446/dyna.v87n215.83688

Magaña Villegas, E., & Díaz López, M. C. (2020). Air quality trend and proposal of a web application for the atmospheric monitoring network in Tabasco, México. Tecciencia, 15(28), 15-28. https://doi.org/10.18180/tecciencia.28.2

Medina Delgado, B., Castro Casadiego, S. A., & Camargo Ariza, L. L. (2015). Tecnologías de código abierto para la gestión de un proceso industrial. Revista Gerencia Tecnológica Informática, 14, 43-58.

Messinger, M., & Silman, M. (2016). Unmanned aerial vehicles for the assessment and monitoring of environmental contamination: An example from coal ash spills. Environmental Pollution, 218, 889-894. https://doi.org/10.1016/j.envpol.2016.08.019

Ministerio de Ambiente y Desarrollo Sostenible. (2017). Resolución 2254 de nov 01. Por la cual se adopta la norma de calidad del aire ambiente.

Organización Mundial de la Salud (OMS). (2005). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. Actualización mundial 2005. https://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa.pdf%0Ajsessionid=970454FA25DFB60943EBC3409FF7E87B?sequence=1

Organización Mundial de la Salud (OMS). (2018, March 2). Calidad del aire ambiente (exterior) y salud. https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

Pita-Morales, L. A. (2016). Línea de tiempo: educación ambiental en Colombia. Praxis, 12, 118. https://doi.org/10.21676/23897856.1853

Ramírez Hernández, O. (2015). Identificación de problemáticas ambientales en Colombia a partir de la percepción social de estudiantes universitarios localizados en diferentes zonas del país. Revista Internacional de Contaminacion Ambiental, 31(3), 293-310.

Rojano, R., Pérez, J., & Freyle, E. (2012). Effect of relative humidity in determining PM10 using a DataRam 4 in coastal region of Colombia. Revista Técnica de la Facultad de Ingenieria Universidad del Zulia, 35(2), 204-212.

Volná, V., & Hladký, D. (2020). Detailed assessment of the effects of meteorological conditions on PM10 concentrations in the northeastern part of the Czech Republic. Atmosphere, 11(5). https://doi.org/10.3390/ATMOS11050497

Wang, T., Han, W., Zhang, M., Yao, X., Zhang, L., Peng, X., … Dan, X. (2020). Unmanned aerial vehicle-borne sensor system for atmosphere-particulate-matter measurements: Design and experiments. Sensors (Switzerland), 20(1). https://doi.org/10.3390/s20010057

Zafra-Mejía, C. A., Rodríguez-Miranda, J. P., & Rondón- Quintana, H. A. (2020). The relationship between atmospheric condition and human mortality associated with coarse material particulate in Bogotá (Colombia). Revista Logos Ciencia & Tecnología, 12(3), 57-68. https://doi.org/10.22335/rlct.v12i3.1237

Zárate, E., Carlos Belalcázar, L., Clappier, A., Manzi, V., & Van den Bergh, H. (2007). Air quality modelling over Bogota, Colombia: Combined techniques to estimate and evaluate emission inventories. Atmospheric Environment, 41(29), 6302-6318. https://doi.org/10.1016/j.atmosenv.2007.03.011

Published

2021-12-01

How to Cite

Generation of Particulate Matter Pollution Maps through Embedded Systems: Case Study in Cúcuta (Colombia). (2021). Revista Logos Ciencia & Tecnología, 13(3), 86-97. https://doi.org/10.22335/rlct.v13i3.1433