Methodology for prioritizing the delivery of humanitarian aid in the context of a COVID-19 pandemic using the QFD Fuzzy tool
DOI:
https://doi.org/10.22335/rlct.v13i2.1371Keywords:
Humanitarian Aid, COVID-19, Priorization, Decision Making, QFD FuzzyAbstract
The impact of the disruption caused by Covid-19 has generated in local governments, multiple challenges related to decision-making, such as prioritizing affected families according to their level of vulnerability to guarantee an equitable allocation of humanitarian aid. This article proposes a methodological framework based on the fuzzy quality function deployment method (QFD Fuzzy) to prioritize families affected by Covid-19 considering variables such as coverage of affected populations, deprivation times, cost efficiency and delivery security. The proposed methodology is tested using synthetic data obtained from a sample of 1000 families in order to establish the order of care of the population in a city in the Center of Valle del Cauca. This document establishes a strategy that offers a government greater effectiveness in making decisions to attend a health emergency such as COVID-19, which supports the humanitarian intention involved in this management. In any case, it is necessary to insist that it is not a methodology that can be static, for which it is necessary to force it to read in a pertinent way the new variables that may arise as indicators of vulnerability. This is presented as supplementary future research.
Downloads
References
Balaji, K., & Kumar, V. S. S. (2014). Multicriteria Inventory ABC Classification in an Automobile Rubber Components Manufacturing Industry. Procedia CIRP, 17, 463- 468. https://doi.org/10.1016/j.procir.2014.02.044
Balcik, B., Beamon, B. M., & Smilowitz, K. (2008). Last mile distribution in humanitarian relief. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 12(2), 51-63. https://doi.org/10.1080/15472450802023329
Baykasoglu, A., Subulan, K., & Karaslan, F. S. (2016). A new fuzzy linear assignment method for multi-attribute decision making with an application to spare parts inventory classification. Applied Soft Computing, 42, 1-17. https://doi.org/10.1016/j.asoc.2016.01.031
Bevilacqua, M., Ciarapica, F. E., & Giacchetta, G. (2006). A fuzzy-QFD approach to supplier selection, 12, 14-27. https://doi.org/10.1016/j.pursup.2006.02.001
Bhalaji, R. K. A., Bathrinath, S., & Saravanasankar, S. (2020). A Fuzzy VIKOR method to analyze the risks in lean manufacturing implementation. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.05.123
Bhattacharya, A., Sarkar, B., & Mukherjee, S. (2007). Distance-based consensus method for ABC analysis. International Journal of Production Research, 45(15), 3405-3420. https://doi.org/10.1080/00207540600847145
Cakir, O., & Canbolat, M. S. (2008). A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, 35(3), 1367-1378. https://doi.org/10.1016/j.eswa.2007.08.041
Chen, Y., Li, K. W., & Liu, S. (2008). A Comparative Study on Multicriteria ABC Analysis in Inventory Management. 2008 IEEE International Conference on Systems, Man and Cybernetics, 3280-3285.
Chu, C. W., Liang, G. S., & Liao, C. T. (2008). Controlling inventory by combining ABC analysis and fuzzy classification. Computers and Industrial Engineering, 55(4), 841-851. https://doi.org/10.1016/j.cie.2008.03.006
Deveci, M., Öner, S. C., Canıtez, F., & Öner, M. (2019). Evaluation of service quality in public bus transportation using interval- valued intuitionistic fuzzy QFD methodology. Research in Transportation Business & Management, 33. https://doi.org/10.1016/j.rtbm.2019.100387
Falcone, D., De Felice, F., Forcina, A., Silvestri, A., & Petrillo, A. (2014). Inventory management using both quantitative and qualitative criteria in manufacturing system. IFAC Proceedings Volumes, 47(3). https://doi.org/10.3182/20140824-6-ZA-003.02279
Ferrer, J. M., Martín-Campo, F. J., Ortuño, M. T., Pedraza-Martínez, A. J., Tirado, G., & Vitoriano, B. (2018). Multi-criteria optimization for last mile distribution of disaster relief aid: Test cases and applications. European Journal of Operational Research, 269(2), 501-515. https://doi.org/10.1016/j.ejor.2018.02.043
Flores, B. E., Olson, D. L., & Dorai, V. K. (1992). Management inventory of multicriteria classification. Mathematical and Computer Modelling, 16(12), 71-82. https://doi.org/10.1016/0895-7177(92)90021-C
Galo, N. R., Daniel, L., Rosso, D., Cesar, L., & Carpinetti, R. (2018). A group decision approach for supplier categorization based on hesitant fuzzy and ELECTRE TRI. International Journal of Production Economics, 202, 182-196. https://doi.org/10.1016/j.ijpe.2018.05.023
Gutjahr, W. J., & Nolz, P. C. (2016). Multicriteria optimization in humanitarian aid. European Journal of Operational Research, 252, 351-366. https://doi.org/10.1016/j.ejor.2015.12.035
Hashemi, S. H., Tavana, M., & Abdi, M. (2020). A comprehensive framework for analyzing challenges in humanitarian supply chain management : A case study of the Iranian Red Crescent Society. International Journal of Disaster Risk Reduction, 42. https://doi.org/10.1016/j.ijdrr.2019.101340
Henao, D., López, F., Chud Pantoja, V. L., & Osorio, J. C. (2019). Priorización multicriterio para la afiliación a un banco de alimentos en Colombia. Revista Logos, Ciencia & Tecnología, 12(1), 58-70. https://doi.org/10.22335/rlct.v12i1.1024
Huang, K., & Rafiei, R. (2019). Equitable last mile distribution in emergency response. Computers and Industrial Engineering, 127, 887-900.
Li, X., Ramshani, M., & Huang, Y. (2018). Cooperative maximal covering models for humanitarian relief chain management. Computers & Industrial Engineering, 119, 301-308. https://doi.org/10.1016/j.cie.2018.04.004
Liu, X., & Wan, S. ping. (2019). A method to calculate the ranges of criteria weights in ELECTRE I and II methods. Computers and Industrial Engineering, 137. https://doi.org/10.1016/j.cie.2019.106067
Makan, A., & Fadili, A. (2020). Sustainability assessment of large-scale composting technologies using PROMETHEE method. Journal of Cleaner Production, 261. https://doi.org/10.1016/j.jclepro.2020.121244
Mary, S., & Mishra, A. K. (2020). Humanitarian food aid and civil conflict. World Development, 126. https://doi.org/10.1016/j.worlddev.2019.104713
Naji-azimi, Z., Renaud, J., Ruiz, A., & Salari, M. (2012). A covering tour approach to the location of satellite distribution centers to supply humanitarian aid. European Journal of Operational Research, 222(3), 596-605. https://doi.org/10.1016/j.ejor.2012.05.001
Osorio Gómez, J. C. (2011). Fuzzy QFD for multicriteria decision making - Application example. Prospectiva, 9(2), 22-29.
Osorio, J. C., Arango, D. C., & Ruales, C. E. (2011). Selección de proveedores usando el despliegue de la función de calidad difusa. Revista EIA, 15, 73-83.
Osorio, J. C., Manotas, D. F., & Rivera, L. (2017). Priorización de Riesgos Operacionales para un Proveedor de Tercera Parte Logística - 3PL. Información Tecnológica, 28(4), 135-144. https://doi.org/10.4067/S0718-07642017000400016
Osorio, J. C., & Manotas, D. F. (2018). AHP Topsis para la selección de proveedores considerando el riesgo asociado a la calidad. Espacios, 39(16).
Rabta, B., Wankmüller, C., & Reiner, G. (2018). A drone fleet model for last-mile distribution in disaster relief operations. International Journal of Disaster Risk Reduction, 28, 107-112. https://doi.org/10.1016/j.ijdrr.2018.02.020
Ruiz-Estrada, M. A., & Ndoma, A. (2019). The uses of unmanned aerial vehicles – UAV ’ s- ( or drones ) in social logistic : disasters and humanitarian relief aid. Procedia Computer Science, 149, 375-383. https://doi.org/10.1016/j.procs.2019.01.151
Shao, J., Wang, X., Liang, C., & Holguín-Veras, J. (2019). Research progress on deprivation costs in humanitarian logistics. International Journal of Disaster Risk Reduction, 42. https://doi.org/10.1016/j.ijdrr.2019.101343
Suzuki, Y. (2019). Impact of material convergence on lastmile distribution in humanitarian logistics. International Journal of Production Economics, 223. https://doi.org/10.1016/j.ijpe.2019.107515
UNGRD. (2020). Informe Operación COVID-19. http://portal.gestiondelriesgo.gov.co/Paginas/Slide_home/Informe-Operacion-COVID-19.aspx
Wang, Z., & Zhang, J. (2019). Agent-based evaluation of humanitarian relief goods supply capability. International Journal of Disaster Risk Reduction, 36. https://doi.org/10.1016/j.ijdrr.2019.101105
Więckowski, J., & Sałabun, W. (2020). How the normalization of the the decision decision influences influences the results in the VIKOR method ? Procedia Computer Science, 176, 2222-2231. https://doi.org/10.1016/j.procs.2020.09.259
Zhou, S., Ji, X., & Xu, X. (2020). A hierarchical selection algorithm for multiple attributes decision making with large-scale alternatives. Information Sciences, 521, 195-208. https://doi.org/10.1016/j.ins.2020.02.030
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Revista Logos Ciencia & Tecnología Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides free and immediate access to its content (https://creativecommons.org/licenses/by/4.0/legalcode#languages), under the principle that making research available to the public free of charge supports greater global knowledge exchange. This means that the authors transfer the Copyrights to the journal, so that the material can be copied and distributed by any means, as long as the authors’ recognition is maintained, and the articles are not commercially used or modified in any way.