Methodology for prioritizing the delivery of humanitarian aid in the context of a COVID-19 pandemic using the QFD Fuzzy tool

Authors

DOI:

https://doi.org/10.22335/rlct.v13i2.1371

Keywords:

Humanitarian Aid, COVID-19, Priorization, Decision Making, QFD Fuzzy

Abstract

The impact of the disruption caused by Covid-19 has generated in local governments, multiple challenges related to decision-making, such as prioritizing affected families according to their level of  vulnerability to guarantee an equitable allocation of humanitarian aid. This article proposes a  methodological framework based on the fuzzy quality function deployment method (QFD Fuzzy) to prioritize families affected by Covid-19 considering  variables such as coverage of affected populations, deprivation times, cost efficiency and delivery  security. The proposed methodology is tested using synthetic data obtained from a sample of 1000  families in order to establish the order of care of the population in a city in the Center of Valle del Cauca. This document establishes a strategy that offers a government greater effectiveness in making  decisions to attend a health emergency such as COVID-19, which supports the humanitarian  intention involved in this management. In any case, it is necessary to insist that it is not a methodology that can be static, for which it is necessary to force it to read in a pertinent way the new variables that may arise as indicators of vulnerability. This is  presented as supplementary future research.

Downloads

Download data is not yet available.

References

Balaji, K., & Kumar, V. S. S. (2014). Multicriteria Inventory ABC Classification in an Automobile Rubber Components Manufacturing Industry. Procedia CIRP, 17, 463- 468. https://doi.org/10.1016/j.procir.2014.02.044

Balcik, B., Beamon, B. M., & Smilowitz, K. (2008). Last mile distribution in humanitarian relief. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 12(2), 51-63. https://doi.org/10.1080/15472450802023329

Baykasoglu, A., Subulan, K., & Karaslan, F. S. (2016). A new fuzzy linear assignment method for multi-attribute decision making with an application to spare parts inventory classification. Applied Soft Computing, 42, 1-17. https://doi.org/10.1016/j.asoc.2016.01.031

Bevilacqua, M., Ciarapica, F. E., & Giacchetta, G. (2006). A fuzzy-QFD approach to supplier selection, 12, 14-27. https://doi.org/10.1016/j.pursup.2006.02.001

Bhalaji, R. K. A., Bathrinath, S., & Saravanasankar, S. (2020). A Fuzzy VIKOR method to analyze the risks in lean manufacturing implementation. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.05.123

Bhattacharya, A., Sarkar, B., & Mukherjee, S. (2007). Distance-based consensus method for ABC analysis. International Journal of Production Research, 45(15), 3405-3420. https://doi.org/10.1080/00207540600847145

Cakir, O., & Canbolat, M. S. (2008). A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, 35(3), 1367-1378. https://doi.org/10.1016/j.eswa.2007.08.041

Chen, Y., Li, K. W., & Liu, S. (2008). A Comparative Study on Multicriteria ABC Analysis in Inventory Management. 2008 IEEE International Conference on Systems, Man and Cybernetics, 3280-3285.

Chu, C. W., Liang, G. S., & Liao, C. T. (2008). Controlling inventory by combining ABC analysis and fuzzy classification. Computers and Industrial Engineering, 55(4), 841-851. https://doi.org/10.1016/j.cie.2008.03.006

Deveci, M., Öner, S. C., Canıtez, F., & Öner, M. (2019). Evaluation of service quality in public bus transportation using interval- valued intuitionistic fuzzy QFD methodology. Research in Transportation Business & Management, 33. https://doi.org/10.1016/j.rtbm.2019.100387

Falcone, D., De Felice, F., Forcina, A., Silvestri, A., & Petrillo, A. (2014). Inventory management using both quantitative and qualitative criteria in manufacturing system. IFAC Proceedings Volumes, 47(3). https://doi.org/10.3182/20140824-6-ZA-003.02279

Ferrer, J. M., Martín-Campo, F. J., Ortuño, M. T., Pedraza-Martínez, A. J., Tirado, G., & Vitoriano, B. (2018). Multi-criteria optimization for last mile distribution of disaster relief aid: Test cases and applications. European Journal of Operational Research, 269(2), 501-515. https://doi.org/10.1016/j.ejor.2018.02.043

Flores, B. E., Olson, D. L., & Dorai, V. K. (1992). Management inventory of multicriteria classification. Mathematical and Computer Modelling, 16(12), 71-82. https://doi.org/10.1016/0895-7177(92)90021-C

Galo, N. R., Daniel, L., Rosso, D., Cesar, L., & Carpinetti, R. (2018). A group decision approach for supplier categorization based on hesitant fuzzy and ELECTRE TRI. International Journal of Production Economics, 202, 182-196. https://doi.org/10.1016/j.ijpe.2018.05.023

Gutjahr, W. J., & Nolz, P. C. (2016). Multicriteria optimization in humanitarian aid. European Journal of Operational Research, 252, 351-366. https://doi.org/10.1016/j.ejor.2015.12.035

Hashemi, S. H., Tavana, M., & Abdi, M. (2020). A comprehensive framework for analyzing challenges in humanitarian supply chain management : A case study of the Iranian Red Crescent Society. International Journal of Disaster Risk Reduction, 42. https://doi.org/10.1016/j.ijdrr.2019.101340

Henao, D., López, F., Chud Pantoja, V. L., & Osorio, J. C. (2019). Priorización multicriterio para la afiliación a un banco de alimentos en Colombia. Revista Logos, Ciencia & Tecnología, 12(1), 58-70. https://doi.org/10.22335/rlct.v12i1.1024

Huang, K., & Rafiei, R. (2019). Equitable last mile distribution in emergency response. Computers and Industrial Engineering, 127, 887-900.

Li, X., Ramshani, M., & Huang, Y. (2018). Cooperative maximal covering models for humanitarian relief chain management. Computers & Industrial Engineering, 119, 301-308. https://doi.org/10.1016/j.cie.2018.04.004

Liu, X., & Wan, S. ping. (2019). A method to calculate the ranges of criteria weights in ELECTRE I and II methods. Computers and Industrial Engineering, 137. https://doi.org/10.1016/j.cie.2019.106067

Makan, A., & Fadili, A. (2020). Sustainability assessment of large-scale composting technologies using PROMETHEE method. Journal of Cleaner Production, 261. https://doi.org/10.1016/j.jclepro.2020.121244

Mary, S., & Mishra, A. K. (2020). Humanitarian food aid and civil conflict. World Development, 126. https://doi.org/10.1016/j.worlddev.2019.104713

Naji-azimi, Z., Renaud, J., Ruiz, A., & Salari, M. (2012). A covering tour approach to the location of satellite distribution centers to supply humanitarian aid. European Journal of Operational Research, 222(3), 596-605. https://doi.org/10.1016/j.ejor.2012.05.001

Osorio Gómez, J. C. (2011). Fuzzy QFD for multicriteria decision making - Application example. Prospectiva, 9(2), 22-29.

Osorio, J. C., Arango, D. C., & Ruales, C. E. (2011). Selección de proveedores usando el despliegue de la función de calidad difusa. Revista EIA, 15, 73-83.

Osorio, J. C., Manotas, D. F., & Rivera, L. (2017). Priorización de Riesgos Operacionales para un Proveedor de Tercera Parte Logística - 3PL. Información Tecnológica, 28(4), 135-144. https://doi.org/10.4067/S0718-07642017000400016

Osorio, J. C., & Manotas, D. F. (2018). AHP Topsis para la selección de proveedores considerando el riesgo asociado a la calidad. Espacios, 39(16).

Rabta, B., Wankmüller, C., & Reiner, G. (2018). A drone fleet model for last-mile distribution in disaster relief operations. International Journal of Disaster Risk Reduction, 28, 107-112. https://doi.org/10.1016/j.ijdrr.2018.02.020

Ruiz-Estrada, M. A., & Ndoma, A. (2019). The uses of unmanned aerial vehicles – UAV ’ s- ( or drones ) in social logistic : disasters and humanitarian relief aid. Procedia Computer Science, 149, 375-383. https://doi.org/10.1016/j.procs.2019.01.151

Shao, J., Wang, X., Liang, C., & Holguín-Veras, J. (2019). Research progress on deprivation costs in humanitarian logistics. International Journal of Disaster Risk Reduction, 42. https://doi.org/10.1016/j.ijdrr.2019.101343

Suzuki, Y. (2019). Impact of material convergence on lastmile distribution in humanitarian logistics. International Journal of Production Economics, 223. https://doi.org/10.1016/j.ijpe.2019.107515

UNGRD. (2020). Informe Operación COVID-19. http://portal.gestiondelriesgo.gov.co/Paginas/Slide_home/Informe-Operacion-COVID-19.aspx

Wang, Z., & Zhang, J. (2019). Agent-based evaluation of humanitarian relief goods supply capability. International Journal of Disaster Risk Reduction, 36. https://doi.org/10.1016/j.ijdrr.2019.101105

Więckowski, J., & Sałabun, W. (2020). How the normalization of the the decision decision influences influences the results in the VIKOR method ? Procedia Computer Science, 176, 2222-2231. https://doi.org/10.1016/j.procs.2020.09.259

Zhou, S., Ji, X., & Xu, X. (2020). A hierarchical selection algorithm for multiple attributes decision making with large-scale alternatives. Information Sciences, 521, 195-208. https://doi.org/10.1016/j.ins.2020.02.030

Published

2021-06-15

Issue

Section

Research articles / Original articles

How to Cite

Methodology for prioritizing the delivery of humanitarian aid in the context of a COVID-19 pandemic using the QFD Fuzzy tool. (2021). Revista Logos Ciencia & Tecnología, 13(2), 72-84. https://doi.org/10.22335/rlct.v13i2.1371