The relationship between atmospheric condition and human mortality associated with coarse material particulate in Bogotá (Colombia)

Authors

DOI:

https://doi.org/10.22335/rlct.v12i3.1237

Keywords:

Bogota, Air pollution, Atmospheric stability, Megacity, Public health, PM10

Abstract

This article studies the relationship between atmospheric condition (AC) and human mortality rate associated with coarse particulate matter (PM10) in a high-altitude mega-city (Bogotá-Colombia). Information was collected from three automatic monitoring stations equipped with measuring instruments for PM10, temperature, solar radiation and wind speed. The sampling period lasted six years. The results showed the best possible scenario for the maximum hourly concentrations of PM10 (52.3-135 μg/m3). These events occurred during daytime periods where the predominant AC was between unstable and very unstable. The risk from exposure to PM10 showed that February>March>January were the highest risks. These months showed PM10 concentrations 35.9% higher than those observed during the months of lower risk (August>June>July). A higher mortality rate (+2.0%) was suggested in urban sectors with less atmospheric instability (AI) and predominance of impervious cover compared to sectors with higher AI and predominance of vegetated cover.

Downloads

Download data is not yet available.

Author Biographies

  • Carlos Alfonso Zafra-Mejía, Universidad Distrital Francisco José de Caldas

    Grupo de Investigación en Ingeniería Ambiental, Dr. en Ingeniería Ambiental. Facultad del Medio Ambiente y Recursos Naturales.

  • Juan Pablo Rodríguez-Miranda, Universidad Distrital Francisco José de Caldas
    Facultad del Medio Ambiente y Recursos Naturales. Dr. en Ingeniería.
  • Hugo Alexander Rondón-Quintana, Universidad Distrital Francisco José de Caldas
    Facultad del Medio Ambiente y Recursos Naturales. Dr. en Ingeniería.

References

Chambers, S. D., Wang, F., Williams, A. G., Xiaodong, D., Zhang, H., Lonati, G.,... Allegrini, I. (2015). Quantifying the influences of atmospheric stability on air pollution in Lanzhou, China, using a radon-based stability monitor. Atmospheric Environment, 107, 233-243. https://doi.org/10.1016/j.atmosenv.2015.02.016

Chen, X., Pei, T., Zhou, Z., Teng, M., He, L., Luo, M., & Liu, X. (2015). Efficiency differences of roadside greenbelts with three configurations in removing coarse particles (PM10): A street scale investigation in Wuhan, China. Urban Forestry & Urban Greening, 14(2), 354-360. https://doi.org/10.1016/j.ufug.2015.02.013

Dahari, N., Latif, M. T., Muda, K., & Hussein, N. (2020). Influence of meteorological variables on suburban atmospheric PM2.5 in the southern region of peninsular Malaysia. Aerosol and Air Quality Research, 20, 14-25. https://doi.org/10.4209/aaqr.2019.06.0313

Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E.,... Speizer, F. E. (1993). An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine, 329(24), 1753-1759. https://doi.org/10.1056/NEJM199312093292401

Fowler, D., Skiba, U., Nemitz, E., Choubedar, F., Branford, D., Donovan, R., & Rowland, P. (2004). Measuring Aerosol and Heavy Metal Deposition on Urban Woodland and Grass Using Inventories of 210PB and Metal Concentrations in Soil. In R. K. Wieder, M. Novák, & M. A. Vile (Eds.), Biogeochemical Investigations of Terrestrial, Freshwater, and Wetland Ecosystems across the Globe (pp. 483-499). Springer Netherlands. https://doi.org/10.1007/978-94-007-0952-2_33

Franck, U., Leitte, A. M., & Suppan, P. (2014). Multiple exposures to airborne pollutants and hospital admissions due to diseases of the circulatory system in Santiago de Chile. The Science of the Total Environment, 468-469, 746-756. https://doi.org/10.1016/j.scitotenv.2013.08.088

Gifford, F. A. (1976). Turbulent diffusion-typing schemes: A review. http://inis.iaea.org/Search/search.aspx?orig_q=RN:8296495

Hernández, E., Martín, F., & Valero, F. (1992). Statistical forecast models for daily air particulate iron and lead concentrations for Madrid, Spain. Atmospheric Environment. Part B. Urban Atmosphere, 26(1), 107-116. https://doi.org/10.1016/0957-1272(92)90042-Q

Hou, Q., An, X., Tao, Y., & Sun, Z. (2016). Assessment of resident’s exposure level and health economic costs of PM10 in Beijing from 2008 to 2012. Science of the Total Environment, 563-564, 557-565. https://doi.org/10.1016/j.scitotenv.2016.03.215

Islam, M. N., Rahman, K.-S., Bahar, M. M., Habib, M. A., Ando, K., & Hattori, N. (2012). Pollution attenuation by roadside greenbelt in and around urban areas. Urban Forestry & Urban Greening, 11(4), 460-464. https://doi.org/10.1016/j.ufug.2012.06.004

Katsouyanni, K., Schwartz, J., Spix, C., Touloumi, G., Zmirou, D., Zanobetti, A., ... Anderson, H. R. (1996). Short term effects of air pollution on health: A European approach using epidemiologic time series data: the APHEA protocol. Journal of Epidemiology and Community Health, 50(Suppl 1), S12-S18.

Lacasaña, M., Aguilar, C., & Romieu, I. (1999). Evolución de la contaminación del aire e impacto de los programas de control en tres megaciudades de América Latina. Salud Pública de México, 41(3), 203-215.

Lee, S., Ho, C.H., Lee, Y. G., Choi, H.J., & Song, C.K. (2013). Influence of transboundary air pollutants from China on the high-PM10 episode in Seoul, Korea for the period October 16–20, 2008. Atmospheric Environment, 77, 430-439. https://doi.org/10.1016/j.atmosenv.2013.05.006

Liu, W., Xu, Z., & Yang, T. (2018). Health effects of air pollution in China. International Journal of Environmental Research and Public Health, 15(7). https://doi.org/10.3390/ijerph15071471

Maesano, C. N., Morel, G., Matynia, A., Ratsombath, N., Bonnety, J., Legros, G., ... Annesi-Maesano, I. (2020). Impacts on human mortality due to reductions in PM10 concentrations through different traffic scenarios in Paris, France. Science of The Total Environment, 698, 134257. https://doi.org/10.1016/j.scitotenv.2019.134257

MAVDT. (2010). Resolución 610 de 2010 Ministerio de Ambiente, Vivienda y Desarrollo Territorial. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=39330

Montoya, G. de J., Cepeda, W., & Eslava, J. A. (2004). Características de la turbulencia y de la estabilidad atmosférica en Bogotá. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 28(108), 327-335.

Palacio, D. F., Zafra, C. A., & Rodríguez, J. P. (2014). Evaluation of the air quality by using a mobile laboratory: Puente Aranda (Bogotá D.C., Colombia). Revista Facultad de Ingeniería Universidad de Antioquia, 71, 153-166.

Pasquill, F. (1961). The estimation of the dispersion of windborne material. Meteorol. Mag., 90, 33-49.

Sarmiento, R., Hernández, L. J., Medina, E. K., Rodríguez, N., & Reyes, J. (2015). Respiratory symptoms associated with air pollution in five localities of Bogotá, 2008-2011, a dynamic cohort study. Biomédica, 35(SPE), 167-176. https://doi.org/10.7705/biomedica.v35i0.2445

Shan, Y., Jingping, C., Liping, C., Zhemin, S., Xiaodong, Z., Dan, W., & Wenhua, W. (2007). Effects of vegetation status in urban green spaces on particle removal in a street canyon atmosphere. Acta Ecologica Sinica, 27(11), 4590-4595. https://doi.org/10.1016/S1872-2032(08)60007-4

Srinivas, C. V., Venkatesan, R., Somayaji, K. M., & Indira, R. (2009). A simulation study of short-range atmospheric dispersion for hypothetical air-borne effluent releases using different turbulent diffusion methods. Air Quality, Atmosphere & Health, 2(1), 21-28. https://doi.org/10.1007/s11869-009-0030-6

Terrouche, A., Ali-Khodja, H., Kemmouche, A., Bouziane, M., Derradji, A., & Charron, A. (2016). Identification of sources of atmospheric particulate matter and trace metals in Constantine, Algeria. Air Quality, Atmosphere & Health, 9(1), 69-82. https://doi.org/10.1007/s11869-014-0308-1

Turner, D. B. (1964). A diffusion model for an urban area. Journal of Applied Meteorology, 3(1), 83-91. https://doi.org/10.1175/1520-0450(1964)003<0083:ADMFAU>2.0.CO;2

U.S.EPA. (1999). Compendium of methods for the determination of inorganic compounds in ambient air.

Vecchi, R., Marcazzan, G., & Valli, G. (2007). A study on night time–daytime PM10 concentration and elemental composition in relation to atmospheric dispersion in the urban area of Milan (Italy). Atmospheric Environment, 41(10), 2136-2144. https://doi.org/10.1016/j.atmosenv.2006.10.069

WHO. (2005). WHO | Air quality guidelines—Global update 2005. WHO. https://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/

Yang, J., Zhou, M., Zhang, F., Yin, P., Wang, B., Guo, Y.,... Liu, Q. (2020). Diabetes mortality burden attributable to shortterm effect of PM10 in China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-08376-1

Zafra, C., Ángel, Y., & Torres, E. (2017). ARIMA analysis of the effect of land surface coverage on PM10 concentrations in a high-altitude megacity. Atmospheric Pollution Research, 8(4), 660-668. https://doi.org/10.1016/j.apr.2017.01.002

Zafra-Mejía, C., Gutiérrez-Malaxechebarria, Á., & Hernández-Peña, Y. (2019). Correlation between vehicular traffic and heavy metal concentrations in road sediments of Bogotá, colombia. Revista Facultad de Medicina, 67(2), 193-199. https://doi.org/10.15446/revfacmed.v67n2.68269

Zoras, S., Triantafyllou, A. G., & Deligiorgi, D. (2006). Atmospheric stability and PM10 concentrations at far distance from elevated point sources in complex terrain: Worstcase episode study. Journal of Environmental Management, 80(4), 295-302. https://doi.org/10.1016/j.jenvman.2005.09.010

Published

2020-11-11

Issue

Section

Research articles / Original articles

How to Cite

The relationship between atmospheric condition and human mortality associated with coarse material particulate in Bogotá (Colombia). (2020). Revista Logos Ciencia & Tecnología, 12(3), 57-68. https://doi.org/10.22335/rlct.v12i3.1237