Estudio comparativo de ecuaciones de estado para el cálculo de Curvas de Rocío en mezclas de gas natural a alta presión

Autores/as

DOI:

https://doi.org/10.22335/rlct.v11i1.743

Palabras clave:

Mezclas de gas, Curvas de rocío, Ecuaciones de estado, Peng-Robinson, Soave-Redlich-Kwong, GERG2008

Resumen

El éxito durante la operación de plantas de tratamiento de gas natural depende de la correcta estimación de las propiedades termodinámicas del sistema. Este artículo calcula las curvas de equilibrio de mezclas de gas natural reales y sintéticas por medio de tres ecuaciones de estado (EOS). Estas curvas de equilibrio fueron construidas y comparadas con datos experimentales presentes en la literatura. Los resultados mostraron que, por encima de 4 MPa la ecuación de Peng-Robinson presentó una desviación considerable con respecto a los datos experimentales, alcanzando un error absoluto de 4,36%; por lo cual se recomienda la ecuación de GERG2008 para sistemas que operen a altas presiones cuando los componentes presentes en la mezcla apliquen.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Natalia Prieto Jiménez, Universidad Industrial de Santander
    Ingeniera química. Magister en Ingeniería Química. Candidata a doctor en Ingeniería Química.
  • Germán González Silva, Universidad Industrial de Santander
    • Ingeniero químico.
    • Magister y Doctor en Ingeniería Química.
    • Profesor asistente en la escuela de Ingeniería de Petróleos en el área de Termodinámica y Modelamiento de Procesos.
    • Director del semillero de investigación en Nanotecnología, Modelado y Simulación Numérica Aplicada a la Industria del Petróleo
  • Alex Chaves Guerrero, Universidad Industrial de Santander

    GIEMA: Grupo de Investigación en Energía y Medio Ambiente

Referencias

Austrheim, T., Gjertsen, L. H., & Hoffmann, A. C. (2008). Experimental investigation of the performance of a large-scale scrubber operating at elevated pressure on live natural gas. Fuel, 87(7), 1281–1288.

Avila, S., Blanco, S. T., Velasco, I., Rauzy, E., & Otín, S. (2002). Thermodynamic Properties of Synthetic Natural Gases. 1. Dew-Point Curves of Synthetic Natural Gases and Their Mixtures with Water and Methanol. Measurement and Correlation. Industrial & Engineering Chemistry Research, 41(15), 3714–3721. https://doi.org/10.1021/ie0110282

Brigadeau, A. H. M. (2007). Modeling and Numerical Investigation of High Pressure Gas-Liquid Separation. Fakultet for ingeniørvitenskap og teknologi.

Elliott, J. R., & Lira, C. T. (1999). Introductory chemical engineering thermodynamics (Vol. 184). Prentice Hall PTR Upper Saddle River, NJ.

Galatro, D., & Marín-Cordero, F. (2014). Considerations for the dew point calculation in rich natural gas. Journal of Natural Gas Science and Engineering, 18, 112–119. https://doi.org/10.1016/J.JNGSE.2014.02.002

González-Silva, G., Matos, E., Martignoni, W., & Mori, M. (2012). The importance of 3D mesh generation for large eddy simulation of gas–solid turbulent flows in a fluidized beds. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 6(8), 770–777.

Guo, B., & Ghalambor, A. (2014). Natural Gas Engineering Handbook. Elsevier.

Jarne, C., Avila, S., Blanco, S. T., Rauzy, E., Otín, S., & Velasco, I. (2004). Thermodynamic Properties of Synthetic Natural Gases. 5. Dew Point Curves of Synthetic Natural Gases and Their Mixtures with Water and with Water and Methanol: Measurement and Correlation. Ind. Eng. Chem. Res., 43(1), 209–217. https://doi.org/10.1021/ie030121i

Jia, W., Wu, X., Li, C., & He, Y. (2017). Characteristic analysis of a non-equilibrium thermodynamic two-fluid model for natural gas liquid pipe flow. Journal of Natural Gas Science and Engineering, 40, 132–140. https://doi.org/10.1016/J.JNGSE.2017.01.036

Jiménez, N. P., Hodapp, M. J., Silva, M. G. E., & Mori, M. (2010). Simulation of the coke combustion in a FCC regenerator using Computational Fluid Dynamics.

Khanwelkar, S. (2015). Natural Gas Processing. Scitus Academics LLC.

Kharoua, N., Khezzar, L., & Saadawi, H. (2013). CFD Modelling of a Horizontal Three-Phase Separator: A Population Balance Approach. American Journal of Fluid Dynamics, 3(4), 101–118. Retrieved from The

Klimeck, R. (2000). Entwicklung einer Fundamentalgleichung für Erdgase für das Gas- und Flüssigkeitsgebiet sowie das Phasengleichgewicht /. Bochum Universitat. Retrieved from https://www.researchgate.net/publication/34445557_Entwicklung_einer_Fundamentalgleichung_fur_Erdgase_fur_das_Gas-_und_Flussigkeitsgebiet_sowie_das_Phasengleichgewicht

Kunz, O., & Wagner, W. (2012). The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004. Journal of Chemical & Engineering Data, 57(11), 3032–3091. https://doi.org/10.1021/je300655b

Laleh, A. P., Svrcek, W. Y., & Monnery, W. D. (2012). Design and CFD studies of multiphase separators—a review. The Canadian Journal of Chemical Engineering, 90(6), 1547–1561. https://doi.org/10.1002/cjce.20665

Lemmon, E. W., & Span, R. (2006). Short Fundamental Equations of State for 20 Industrial Fluids. Journal of Chemical & Engineering Data, 51(3), 785–850. https://doi.org/10.1021/je050186n

Mokhatab, S., Poe, W. A., & Mak, J. Y. (2015). Chapter 3 - Basic Concepts of Natural Gas Processing. In Handbook of Natural Gas Transmission and Processing (Third Edition) (pp. 123–135). Boston: Gulf Professional Publishing.

Mørch, Ø., Nasrifar, K., Bolland, O., Solbraa, E., Fredheim, A. O., & Gjertsen, L. H. (2006). Measurement and modeling of hydrocarbon dew points for five synthetic natural gas mixtures. Fluid Phase Equilibria, 239(2), 138–145. https://doi.org/10.1016/j.fluid.2005.11.010

Peng, D.-Y., & Robinson, D. B. (1976). A New Two-Constant Equation of State. Ind. Eng. Chem. Fund., 15(1), 59–64. https://doi.org/10.1021/i160057a011

Pitzer, K. S., & Curl Jr, R. (1957). The volumetric and thermodynamic properties of fluids. III. Empirical equation for the second virial coefficient1. Journal of the American Chemical Society, 79(10), 2369–2370.

Poling, B., Prausnitz, J., & Connell, J. O. (2000a). The Properties of Gases and Liquids 5E. McGraw Hill Professional.

Poling, B., Prausnitz, J., & Connell, J. O. (2000b). The Properties of Gases and Liquids 5E. McGraw Hill Professional.

Shoaib, A. M., Bhran, A. A., Awad, M. E., El-Sayed, N. A., & Fathy, T. (2018). Optimum operating conditions for improving natural gas dew point and condensate throughput. Journal of Natural Gas Science and Engineering, 49, 324–330. https://doi.org/10.1016/J.JNGSE.2017.11.008

Silva, G. G., Jiménez, N. P., & Salazar, O. F. (2012). Fluid Dynamics of Gas-Solid Fluidized Beds. In Advanced Fluid Dynamics. InTech.

Silva, G. G., Prieto, N., & Mercado, I. (2018). Large Eddy Simulation (LES) Aplicado a un lecho fluidizado gas–sólido. Parte I: Reactor a escala de laboratorio. Revista UIS Ingenierías, 17(1), 93–104.

Soave, G. (1972). Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, 27(6), 1197–1203. https://doi.org/10.1016/0009-2509(72)80096-4

Span, R., & Wagner, W. (2003). Equations of State for Technical

Applications. II. Results for Nonpolar Fluids. International Journal of Thermophysics, 24(1), 41–109. https://doi.org/10.1023/A:1022310214958

Valiollahi, S., Kavianpour, B., Raeissi, S., & Moshfeghian, M. (2016). A new Peng-Robinson modification to enhance dew point estimations of natural gases. Journal of Natural Gas Science and Engineering, 34, 1137–1147. https://doi.org/10.1016/j.jngse.2016.07.049

Zaghloul, J. S. (2006). Multiphase Analysis of Three-phase (gas-condensate-water) Flow in Pipes. ProQuest.

Publicado

2018-12-30

Número

Sección

Artículos de investigación / Artículos Originales

Cómo citar

Estudio comparativo de ecuaciones de estado para el cálculo de Curvas de Rocío en mezclas de gas natural a alta presión. (2018). Revista Logos Ciencia & Tecnología, 11(1), 152-164. https://doi.org/10.22335/rlct.v11i1.743