Comparative Study of Equations of State for the Dew Curves Calculation in High Pressure Natural Gas Mixtures. [Estudio Comparativo de Ecuaciones de Estado para el Cálculo de Curvas de Rocío en Mezclas de Gas Natural a Alta Presión]

Natalia Prieto Jiménez, Germán González Silva

Resumen


he success during the operation of natural gas processing plants depends on the correct estimation of thermodynamic properties of the system. This paper calculates the equilibrium curves of real and synthetic natural gas mixtures means of three Equations of State (EOS). These equilibrium curves were constructed and compared with experimental data found in the literature covered. The results showed that, above 4 MPa the Peng-Robinson equation presented a considerable deviation with respect to the experimental data, reaching an absolute error of 4.36%; therefore, the GERG2008 equation is recommended for systems that operate at high pressures when the components present in the mixture apply.

Keywords:

Gas Mixtures, Dew curves, Equations of State; Peng-Robinson, Soave-Redlich-Kwong, GERG2008.

Resumen

El éxito durante la operación de plantas de tratamiento de gas natural depende de la correcta estimación de las propiedades termodinámicas del sistema. Este artículo calcula las curvas de equilibrio de mezclas de gas natural reales y sintéticas por medio de tres ecuaciones de estado (EOS). Estas curvas de equilibrio fueron construidas y comparadas con datos experimentales presentes en la literatura. Los resultados mostraron que, por encima de 4 MPa la ecuación de Peng-Robinson presentó una desviación considerable con respecto a los datos experimentales, alcanzando un error absoluto de 4,36%; por lo cual se recomienda la ecuación de GERG2008 para sistemas que operen a altas presiones cuando los componentes presentes en la mezcla apliquen.

Palabras clave: 

Mezclas de gas, Curvas de rocío, Ecuaciones de estado, Peng-Robinson, Soave-Redlich-Kwong, GERG2008.

Resumo

O sucesso na operação de usinas de tratamento de gás natural depende da correta estimação das propriedades termodinâmicas do sistema. Este artigo calcula as curvas de equilíbrio de misturas de gás natural reais e sintéticas por meio de três equações de estado (EOS). As curvas de equilíbrio foram construídas e comparadas com dados experimentais presentes na literatura. Os resultados mostraram que, acima de 4 Mpa a equação de Peng-Robinson apresentou um desvio considerável em relação aos dados experimentais, atingindo um erro absoluto de 4,36%; por tanto, é recomendável a equação de GERG2008 para sistemas que operam em alta pressão quando os componentes presentes no sistema apliquem.

Palavras-chave:

Misturas de gás, Curvas de orvalho, Equações de estado, Peng-Robinson, Soave-Redlich-Kwong, GERG2008.

 


Palabras clave


teoría del conocimiento

Texto completo:

PDF (English) HTML (English)

Referencias


Austrheim, T., Gjertsen, L. H., & Hoffmann, A. C. (2008). Experimental investigation of the performance of a large-scale scrubber operating at elevated pressure on live natural gas. Fuel, 87(7), 1281–1288.

Avila, S., Blanco, S. T., Velasco, I., Rauzy, E., & Otín, S. (2002). Thermodynamic Properties of Synthetic Natural Gases. 1. Dew-Point Curves of Synthetic Natural Gases and Their Mixtures with Water and Methanol. Measurement and Correlation. Industrial & Engineering Chemistry Research, 41(15), 3714–3721. https://doi.org/10.1021/ie0110282

Brigadeau, A. H. M. (2007). Modeling and Numerical Investigation of High Pressure Gas-Liquid Separation. Fakultet for ingeniørvitenskap og teknologi.

Elliott, J. R., & Lira, C. T. (1999). Introductory chemical engineering thermodynamics (Vol. 184). Prentice Hall PTR Upper Saddle River, NJ.

Galatro, D., & Marín-Cordero, F. (2014). Considerations for the dew point calculation in rich natural gas. Journal of Natural Gas Science and Engineering, 18, 112–119. https://doi.org/10.1016/J.JNGSE.2014.02.002

González-Silva, G., Matos, E., Martignoni, W., & Mori, M. (2012). The importance of 3D mesh generation for large eddy simulation of gas–solid turbulent flows in a fluidized beds. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 6(8), 770–777.

Guo, B., & Ghalambor, A. (2014). Natural Gas Engineering Handbook. Elsevier.

Jarne, C., Avila, S., Blanco, S. T., Rauzy, E., Otín, S., & Velasco, I. (2004). Thermodynamic Properties of Synthetic Natural Gases. 5. Dew Point Curves of Synthetic Natural Gases and Their Mixtures with Water and with Water and Methanol: Measurement and Correlation. Ind. Eng. Chem. Res., 43(1), 209–217. https://doi.org/10.1021/ie030121i

Jia, W., Wu, X., Li, C., & He, Y. (2017). Characteristic analysis of a non-equilibrium thermodynamic two-fluid model for natural gas liquid pipe flow. Journal of Natural Gas Science and Engineering, 40, 132–140. https://doi.org/10.1016/J.JNGSE.2017.01.036

Jiménez, N. P., Hodapp, M. J., Silva, M. G. E., & Mori, M. (2010). Simulation of the coke combustion in a FCC regenerator using Computational Fluid Dynamics.

Khanwelkar, S. (2015). Natural Gas Processing. Scitus Academics LLC.

Kharoua, N., Khezzar, L., & Saadawi, H. (2013). CFD Modelling of a Horizontal Three-Phase Separator: A Population Balance Approach. American Journal of Fluid Dynamics, 3(4), 101–118. Retrieved from The

Klimeck, R. (2000). Entwicklung einer Fundamentalgleichung für Erdgase für das Gas- und Flüssigkeitsgebiet sowie das Phasengleichgewicht /. Bochum Universitat. Retrieved from https://www.researchgate.net/publication/34445557_Entwicklung_einer_Fundamentalgleichung_fur_Erdgase_fur_das_Gas-_und_Flussigkeitsgebiet_sowie_das_Phasengleichgewicht

Kunz, O., & Wagner, W. (2012). The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004. Journal of Chemical & Engineering Data, 57(11), 3032–3091. https://doi.org/10.1021/je300655b

Laleh, A. P., Svrcek, W. Y., & Monnery, W. D. (2012). Design and CFD studies of multiphase separators—a review. The Canadian Journal of Chemical Engineering, 90(6), 1547–1561. https://doi.org/10.1002/cjce.20665

Lemmon, E. W., & Span, R. (2006). Short Fundamental Equations of State for 20 Industrial Fluids. Journal of Chemical & Engineering Data, 51(3), 785–850. https://doi.org/10.1021/je050186n

Mokhatab, S., Poe, W. A., & Mak, J. Y. (2015). Chapter 3 - Basic Concepts of Natural Gas Processing. In Handbook of Natural Gas Transmission and Processing (Third Edition) (pp. 123–135). Boston: Gulf Professional Publishing.

Mørch, Ø., Nasrifar, K., Bolland, O., Solbraa, E., Fredheim, A. O., & Gjertsen, L. H. (2006). Measurement and modeling of hydrocarbon dew points for five synthetic natural gas mixtures. Fluid Phase Equilibria, 239(2), 138–145. https://doi.org/10.1016/j.fluid.2005.11.010

Peng, D.-Y., & Robinson, D. B. (1976). A New Two-Constant Equation of State. Ind. Eng. Chem. Fund., 15(1), 59–64. https://doi.org/10.1021/i160057a011

Pitzer, K. S., & Curl Jr, R. (1957). The volumetric and thermodynamic properties of fluids. III. Empirical equation for the second virial coefficient1. Journal of the American Chemical Society, 79(10), 2369–2370.

Poling, B., Prausnitz, J., & Connell, J. O. (2000a). The Properties of Gases and Liquids 5E. McGraw Hill Professional.

Poling, B., Prausnitz, J., & Connell, J. O. (2000b). The Properties of Gases and Liquids 5E. McGraw Hill Professional.

Shoaib, A. M., Bhran, A. A., Awad, M. E., El-Sayed, N. A., & Fathy, T. (2018). Optimum operating conditions for improving natural gas dew point and condensate throughput. Journal of Natural Gas Science and Engineering, 49, 324–330. https://doi.org/10.1016/J.JNGSE.2017.11.008

Silva, G. G., Jiménez, N. P., & Salazar, O. F. (2012). Fluid Dynamics of Gas-Solid Fluidized Beds. In Advanced Fluid Dynamics. InTech.

Silva, G. G., Prieto, N., & Mercado, I. (2018). Large Eddy Simulation (LES) Aplicado a un lecho fluidizado gas–sólido. Parte I: Reactor a escala de laboratorio. Revista UIS Ingenierías, 17(1), 93–104.

Soave, G. (1972). Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, 27(6), 1197–1203. https://doi.org/10.1016/0009-2509(72)80096-4

Span, R., & Wagner, W. (2003). Equations of State for Technical

Applications. II. Results for Nonpolar Fluids. International Journal of Thermophysics, 24(1), 41–109. https://doi.org/10.1023/A:1022310214958

Valiollahi, S., Kavianpour, B., Raeissi, S., & Moshfeghian, M. (2016). A new Peng-Robinson modification to enhance dew point estimations of natural gases. Journal of Natural Gas Science and Engineering, 34, 1137–1147. https://doi.org/10.1016/j.jngse.2016.07.049

Zaghloul, J. S. (2006). Multiphase Analysis of Three-phase (gas-condensate-water) Flow in Pipes. ProQuest.




DOI: http://dx.doi.org/10.22335/rlct.v11i1.743

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2019 Revista Logos Ciencia & Tecnología

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.

Revista Científica indexada e indizada en:

                                   Resultado de imagen para erih plus logos               

 

 Emerging Sources Citation Index       SRG-Index


       

 


Backfiles en:

    SHERPA/RoMEO Logo 

     

 

 

     

 

 

ISSN de la revista (versión impresa) 2145-549X
ISSN de la revista (versión electrónica) 2422-4200



BY. Todos los contenidos de la Revista, a menos de que se indique lo contrario, están bajo la licencia de Creative Commons Attribution 

 

 

Revista Logos Ciencia & Tecnología
Policía Nacional de Colombia
Trv. 33 No. 47A - 35 Sur• Bogotá, D.C., Colombia

Código Postal: 110611-Código Postal Ampliado: 110611001

 

Teléfono: (57-1) 515 9000 Ext. 9854
Correo: dinae.logosct@policia.gov.co

 

 

 

 

 

 

POLICÍA NACIONAL DE COLOMBIA
Carrera 59 Nº 26 - 21, CAN, Bogotá DC.
Atención administrativa de lunes a viernes de 8:00 am a 12:00 pm y de 2:00 pm a 5:00 pm - Requerimientos ciudadanos 24 horas
Línea de Atención al Ciudadano Bogotá: (571) 315 91 11 / 91 12 - Resto del país: 018000 910 600 FAX (571) 315 95 81 E -mail: lineadirecta@policia.gov.co
Centro de mediaciones Pedagógicas y Tecnológicas
Copyright © www.policia.gov.co - 2014