Tratamientos para la remoción de antibacteriales y agentes antimicrobiales presentes en aguas residuales. [Treatments for the removal of antibacterial and antimicrobial agents present in wastewater]

Diego Ivan Caviedes Rubio, Diana Marcela Camacho Feria, Daniel Ricardo Delgado. Universidad Cooperativa de Colombia, Colombia

Resumen


El abundante uso de sustancias emergentes microcontaminantes y su inadecuada disposición final, han centrado la atención de las autoridades ambientales en los efectos que sobre el ambiente, se le atribuyen a los antibacteriales y agentes antimicrobiales vertidos en los cuerpos de agua. Actualmente, diversas investigaciones han centrado sus objetivos en determinar las eficiencias que distintos tratamientos físicos, químicos y biológicos presentan para remover diferentes productos farmacéuticos incluidos los anteriormente mencionados. Esta revisión incluye resultados de diversos tratamientos a nivel de microcosmo, mesocosmo y a escala real, en los que se incluyen las principales condiciones experimentales en que se desarrollan las mediciones.

Abstract

The abundant use of emerging micro-pollutants and their inadequate final disposal have focused the attention of environmental authorities on the effects on the environment of antibacterial and antimicrobial agents discharged into bodies of water. Currently, several researches have focused their objectives on determining the efficiencies that different physical, chemical and biological treatments present to remove different pharmaceutical products including those mentioned above. This review includes results of various treatments at the microcosm, mesocosm and real scale level, which include the main experimental conditions in which the measurements are developed.


Keywords: Emerging Substances, Wastewater, Experimental Conditions.


Resumo

O uso abundante de substâncias emergentes micro e sua eliminação inadequada, têm-se centrado a atenção das autoridades ambientais sobre os efeitos sobre o meio ambiente, são atribuídos a agentes antibacterianos e antimicrobianos descarregados em corpos de água. Atualmente pesquisa tem focado seus objetivos para determinar a eficiência de vários tratamentos biológicos físicas, químicas e tem que remover vários produtos farmacêuticos, incluindo os mencionados acima. Esta avaliação inclui resultados de diferentes tratamentos em microcosmos, mesocom e grande escala, em que as principais condições experimentais em que as medições se realizam são incluídos.

Palavras-chave: Substâncias emergentes, águas residuais, condições experimentais.


Texto completo:

PDF HTML

Referencias


Adamek, E., Baran, W., & Sobczak, A. (2016). Photocatalytic degradation of veterinary antibiotics: Biodegradability and antimicrobial activity of intermediates. Process Safety and Environmental Protection, 103, Part A, 1-9. doi: http://dx.doi.org/10.1016/j.psep.2016.06.015

Al-Odaini, N. Zakaria, M. Yaziz, M. Surif, S. 2010. Multi-residue analytical method for human pharmaceuticals and synthetic hormones in river water and sewage effluents by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1217. 6791–6806.

Álvarez-Torrellas, S., Rodríguez, A., Ovejero, G., & García, J. (2016). Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chemical Engineering Journal, 283, 936-947. doi: http://dx.doi.org/10.1016/j.cej.2015.08.023

Azhar, M. R., Abid, H. R., Sun, H., Periasamy, V., Tadé, M. O., & Wang, S. (2016). Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. Journal of Colloid and Interface Science, 478, 344-352. doi: http://dx.doi.org/10.1016/j.jcis.2016.06.032

Borges, M. E., Sierra, M., Cuevas, E., García, R. D., & Esparza, P. (2016). Photocatalysis

Çalışkan Salihi, E., & Mahramanlıoğlu, M. (2014). Equilibrium and kinetic adsorption of drugs on bentonite: Presence of surface active agents effect. Applied Clay Science, 101, 381-389. doi: http://dx.doi.org/10.1016/j.clay.2014.06.015

Çalışkan Salihi, E., & Mahramanlıoğlu, M. (2014). Equilibrium and kinetic adsorption of drugs on bentonite: Presence of surface active agents effect. Applied Clay Science, 101, 381-389. doi: http://dx.doi.org/10.1016/j.clay.2014.06.015

Chen, J., Wei, X.-D., Liu, Y.-S., Ying, G.-G., Liu, S.-S., He, L.-Y., . . . Yang, Y.-Q. (2016). Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading. Science of The Total Environment, 565, 240-248. doi: http://dx.doi.org/10.1016/j.scitotenv.2016.04.176

Chen, J., Ying, G.-G., Wei, X.-D., Liu, Y.-S., Liu, S.-S., Hu, L.-X., . . . Yang, Y.-Q. (2016). Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species. Science of The Total Environment, 571, 974-982. doi: http://dx.doi.org/10.1016/j.scitotenv.2016.07.085

Chen, X., Fang, C. Q., & Wang, X. (2017). The influence of surface effect on vibration behaviors of carbon nanotubes under initial stress. Physica E: Low-dimensional Systems and Nanostructures, 85, 47-55. doi: http://dx.doi.org/10.1016/j.physe.2016.08.011

Cheng, X. Q., Zhang, C., Wang, Z. X., & Shao, L. (2016). Tailoring nanofiltration membrane performance for highly-efficient antibiotics removal by mussel-inspired modification. Journal of Membrane Science, 499, 326-334. doi: http://dx.doi.org/10.1016/j.memsci.2015.10.060

Choi, K.-J., Kim, S.-G., & Kim, S.-H. (2008). Removal of antibiotics by coagulation and granular activated carbon filtration. Journal of Hazardous Materials, 151(1), 38-43. doi: http://dx.doi.org/10.1016/j.jhazmat.2007.05.059

Choi, Y.-J., Kim, L.-H., & Zoh, K.-D. (2016). Removal characteristics and mechanism of antibiotics using constructed wetlands. Ecological Engineering, 91, 85-92. doi: http://dx.doi.org/10.1016/j.ecoleng.2016.01.058

Devreese, M., Osselaere, A., Goossens, J., Vandenbroucke, V., De Baere, S., De Backer, P., & Croubels, S. (2012). Interaction between tylosin and bentonite clay from a pharmacokinetic perspective. The Veterinary Journal, 194(3), 437-439. doi: http://dx.doi.org/10.1016/j.tvjl.2012.05.016

Ding, H., Wu, Y., Zou, B., Lou, Q., Zhang, W., Zhong, J., . . . Dai, G. (2016). Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption. Journal of Hazardous Materials, 307, 350-358. doi: http://dx.doi.org/10.1016/j.jhazmat.2015.12.062

Elmolla, E. S., & Chaudhuri, M. (2010). Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 252(1–3), 46-52. doi: http://dx.doi.org/10.1016/j.desal.2009.11.003

Exall, K., Balakrishnan, V. K., Toito, J., & McFadyen, R. (2013). Impact of selected wastewater constituents on the removal of sulfonamide antibiotics via ultrafiltration and micellar enhanced ultrafiltration. Science of The Total Environment, 461–462, 371-376. doi: http://dx.doi.org/10.1016/j.scitotenv.2013.04.057

Fernández, A. M. L., Rendueles, M., & Díaz, M. (2014). Sulfamethazine retention from water solutions by ion exchange with a strong anionic resin in fixed bed.Separation Science and Technology (Philadelphia),49(9), 1366-1378. doi:10.1080/01496395.2013.879666

Gabarrón, S., Gernjak, W., Valero, F., Barceló, A., Petrovic, M., & Rodríguez-Roda, I. (2016). Evaluation of emerging contaminants in a drinking water treatment plant using electrodialysis reversal technology. Journal of Hazardous Materials, 309, 192-201. doi: http://dx.doi.org/10.1016/j.jhazmat.2016.02.015

Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S. M., & Su, X. (2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of Colloid and Interface Science, 368(1), 540-546. doi: http://dx.doi.org/10.1016/j.jcis.2011.11.015

García-Vaquero, N., Lee, E., Jiménez Castañeda, R., Cho, J., & López-Ramírez, J. A. (2014). Comparison of drinking water pollutant removal using a nanofiltration pilot plant powered by renewable energy and a conventional treatment facility. Desalination, 347, 94-102. doi: http://dx.doi.org/10.1016/j.desal.2014.05.036

Gautam, S., Shandilya, P., Priya, B., Singh, V. P., Raizada, P., Rai, R., . . . Singh, P. (2017). Superparamagnetic MnFe2O4 dispersed over graphitic carbon sand composite and bentonite as magnetically recoverable photocatalyst for antibiotic mineralization. Separation and Purification Technology, 172, 498-511. doi: http://dx.doi.org/10.1016/j.seppur.2016.09.006

Genç, N., & Dogan, E. C. (2015). Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice. Desalination and Water Treatment, 53(3), 785-793. doi:10.1080/19443994.2013.842504

Genç, N., Dogan, E. C., & Yurtsever, M. (2013). Bentonite for ciprofloxacin removal from aqueous solution. Water Science and Technology, 68(4), 848-855. doi:10.2166/wst.2013.313

Guo, R. Chen, J. 2015. Application of alga-activated sludge combined system (AASCS) as a novel treatment to remove cephalosporins, Chemical Engineering Journal, 260, 15, 550-556, ISSN 1385-8947, http://dx.doi.org/10.1016/j.cej.2014.09.053.

Guo, W. Zheng, H. Li, S. Du, J. Feng, X. Yin, R. Wu, Q. Ren, N. Chang, J. 2016. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae, Bioresource Technology, 221, 284-290, ISSN 0960-8524, http://dx.doi.org/10.1016/j.biortech.2016.09.036.

Hijosa-Valsero, M., Fink, G., Schlüsener, M. P., Sidrach-Cardona, R., Martín-Villacorta, J., Ternes, T., & Bécares, E. (2011). Removal of antibiotics from urban wastewater by constructed wetland optimization. Chemosphere, 83(5), 713-719. doi: http://dx.doi.org/10.1016/j.chemosphere.2011.02.004

Hsu, S., & Singer, P. C. (2010). Removal of bromide and natural organic matter by anion exchange. Water Research, 44(7), 2133-2140. doi: http://dx.doi.org/10.1016/j.watres.2009.12.027

Huang, X. Zheng, J. Liu, C. Liu, L. Liu, Y. Fan, H. 2017. Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: Effect of hydraulic flow direction and substrate type, Chemical Engineering Journal, 308, 15, 692-699, http://dx.doi.org/10.1016/j.cej.2016.09.110.

Hussain, S. A., Prasher, S. O., & Patel, R. M. (2012). Removal of ionophoric antibiotics in free water surface constructed wetlands. Ecological Engineering, 41, 13-21. doi: http://dx.doi.org/10.1016/j.ecoleng.2011.12.006

Jadhav, S. V., Marathe, K. V., & Rathod, V. K. (2016). A pilot scale concurrent removal of fluoride, arsenic, sulfate and nitrate by using nanofiltration: Competing ion interaction and modelling approach. Journal of Water Process Engineering, 13, 153-167. doi: http://dx.doi.org/10.1016/j.jwpe.2016.04.008

Jardim, W. Montagner, C. Pescara, I. Umbuzeiro, G. Bergamasco, A. Eldridge, M. Sodré, F. 2012. An integrated approach to evaluate emerging contaminants in drinking water, Separation and Purification Technology, 84, 9 3-8, http://dx.doi.org/10.1016/j.seppur.2011.06.020.

Jia, S., Yang, Z., Ren, K., Tian, Z., Dong, C., Ma, R., . . . Yang, W. (2016). Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study. Journal of Hazardous Materials, 317, 593-601. doi: http://dx.doi.org/10.1016/j.jhazmat.2016.06.024

Jia, S., Yang, Z., Yang, W., Zhang, T., Zhang, S., Yang, X., . . . Wang, Y. (2016). Removal of Cu(II) and tetracycline using an aromatic rings-functionalized chitosan-based flocculant: Enhanced interaction between the flocculant and the antibiotic. Chemical Engineering Journal, 283, 495-503. doi: http://dx.doi.org/10.1016/j.cej.2015.08.003

Jiménez, V., Sánchez, P., & Romero, A. (2017). 2 - Materials for activated carbon fiber synthesis A2 - Chen, Jonathan Y Activated Carbon Fiber and Textiles (pp. 21-38). Oxford: Woodhead Publishing.

Khan, M. I., Zheng, C., Mondal, A. N., Hossain, M. M., Wu, B., Emmanuel, K., . . . Xu, T. (2017). Preparation of anion exchange membranes from BPPO and dimethylethanolamine for electrodialysis. Desalination, 402, 10-18. doi: http://dx.doi.org/10.1016/j.desal.2016.09.019

Kim, H., Hwang, Y. S., & Sharma, V. K. (2014). Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes. Chemical Engineering Journal, 255, 23-27. doi: http://dx.doi.org/10.1016/j.cej.2014.06.035

Kleywegt, S. Pileggi, V. Yang, P. Hao, C. Zhao, X. Thach, S. Cheung, P & Whitehead, B. 2011. Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada — Occurrence and treatment efficiency. Science of the Total Environment 409, 1481–1488

Li, J., Xu, X., Liu, X., Qin, W., Wang, M., & Pan, L. (2017). Metal-organic frameworks derived cake-like anatase/rutile mixed phase TiO2 for highly efficient photocatalysis. Journal of Alloys and Compounds, 690, 640-646. doi: http://dx.doi.org/10.1016/j.jallcom.2016.08.176

Li, S. Z., Li, X. Y., Cui, Z. F., & Wang, D. Z. (2004). Application of ultrafiltration to improve the extraction of antibiotics. Separation and Purification Technology, 34(1–3), 115-123. doi: http://dx.doi.org/10.1016/S1383-5866(03)00185-0

Li, S.-z., Li, X.-y., & Wang, D.-z. (2004). Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics. Separation and Purification Technology, 34(1–3), 109-114. doi: http://dx.doi.org/10.1016/S1383-5866(03)00184-9

Liu, J., Wu, S., Lu, Y., Liu, Q., Jiao, Q., Wang, X., & Zhang, H. (2016). An integrated electrodialysis-biocatalysis-spray-drying process for efficient recycling of keratin acid hydrolysis industrial wastewater. Chemical Engineering Journal, 302, 146-154. doi: http://dx.doi.org/10.1016/j.cej.2016.05.046

Liu, P., Zhang, H., Feng, Y., Yang, F., & Zhang, J. (2014). Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chemical Engineering Journal, 240, 211-220. doi: http://dx.doi.org/10.1016/j.cej.2013.11.057

Lu, H., Zou, W., Chai, P., Wang, J., & Bazinet, L. (2016). Feasibility of antibiotic and sulfate ions separation from wastewater using electrodialysis with ultrafiltration membrane. Journal of Cleaner Production, 112, Part 4, 3097-3105. doi: http://dx.doi.org/10.1016/j.jclepro.2015.09.091

Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., . . . Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473-474, 619-641. doi: 10.1016/j.scitotenv.2013.12.065

Martins, A. C., Pezoti, O., Cazetta, A. L., Bedin, K. C., Yamazaki, D. A. S., Bandoch, G. F. G., . . . Almeida, V. C. (2015). Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chemical Engineering Journal, 260, 291-299. doi: http://dx.doi.org/10.1016/j.cej.2014.09.017

Mohammadi, A., Kazemipour, M., Ranjbar, H., Walker, R. B., & Ansari, M. (2015). Amoxicillin Removal from Aqueous Media Using Multi-Walled Carbon Nanotubes. Fullerenes, Nanotubes and Carbon Nanostructures, 23(2), 165-169. doi: 10.1080/1536383X.2013.866944

Moussavi, G., Alahabadi, A., Yaghmaeian, K., & Eskandari, M. (2013). Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chemical Engineering Journal, 217, 119-128. doi: http://dx.doi.org/10.1016/j.cej.2012.11.069

Ncibi, M. C., & Sillanpää, M. (2015). Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. Journal of Hazardous Materials, 298, 102-110. doi: http://dx.doi.org/10.1016/j.jhazmat.2015.05.025

Nourani, M., Baghdadi, M., Javan, M., & Bidhendi, G. N. (2016). Production of a biodegradable flocculant from cotton and evaluation of its performance in coagulation-flocculation of kaolin clay suspension: Optimization through response surface methodology (RSM). Journal of Environmental Chemical Engineering, 4(2), 1996-2003. doi: http://dx.doi.org/10.1016/j.jece.2016.03.028

Ouaissa, Y. A., Chabani, M., Amrane, A., & Bensmaili, A. (2014). Removal of tetracycline by electrocoagulation: Kinetic and isotherm modeling through adsorption. Journal of Environmental Chemical Engineering, 2(1), 177-184. doi: http://dx.doi.org/10.1016/j.jece.2013.12.009

Pan, M., & Chu, L. M. (2016). Adsorption and degradation of five selected antibiotics in agricultural soil. Science of The Total Environment, 545–546, 48-56. doi: http://dx.doi.org/10.1016/j.scitotenv.2015.12.040

Peng, Y. Hall, S. Gautam, L. 2016. Drugs of abuse in drinking water - a review of current detection methods, occurrence, elimination and health risks, TrAC Trends in Analytical Chemistry, Available online 28 September 2016, ISSN 0165-9936, http://dx.doi.org/10.1016/j.trac.2016.09.011.

Pouretedal, H. R., & Sadegh, N. (2014). Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. Journal of Water Process Engineering, 1, 64-73. doi: http://dx.doi.org/10.1016/j.jwpe.2014.03.006

Putra, E. K., Pranowo, R., Sunarso, J., Indraswati, N., & Ismadji, S. (2009). Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Research, 43(9), 2419-2430. doi: http://dx.doi.org/10.1016/j.watres.2009.02.039

Rahardjo, A. K., Susanto, M. J. J., Kurniawan, A., Indraswati, N., & Ismadji, S. (2011). Modified Ponorogo bentonite for the removal of ampicillin from wastewater. Journal of Hazardous Materials, 190(1–3), 1001-1008. doi: http://dx.doi.org/10.1016/j.jhazmat.2011.04.052

Ren, M., Song, Y., Xiao, S., Zeng, P., & Peng, J. (2011). Treatment of berberine hydrochloride wastewater by using pulse electro-coagulation process with Fe electrode. Chemical Engineering Journal, 169(1–3), 84-90. doi: http://dx.doi.org/10.1016/j.cej.2011.02.056

S. Gabarrón, W. Gernjak, F. Valero, A. Barceló, M. Petrovic, I. Rodríguez. 2016. Evaluation of emerging contaminants in a drinking water treatment plant using electrodialysis reversal technology, Journal of Hazardous Materials, Volume 309, (15) 192-201, ISSN 0304-3894, http://dx.doi.org/10.1016/j.jhazmat.2016.02.015.

Saitoh, T., Shibata, K., & Hiraide, M. (2014). Rapid removal and photodegradation of tetracycline in water by surfactant-assisted coagulation–sedimentation method. Journal of Environmental Chemical Engineering, 2(3), 1852-1858. doi: http://dx.doi.org/10.1016/j.jece.2014.08.005

Serna-Galvis, E. A., Silva-Agredo, J., Giraldo, A. L., Flórez-Acosta, O. A., & Torres-Palma, R. A. (2016). Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO2-photocatalysis and electrochemical processes. Science of The Total Environment, 541, 1431-1438. doi: http://dx.doi.org/10.1016/j.scitotenv.2015.10.029

Silva, H. Gonzaga, G. y Camargo, A. Monteiro, F. 2006. Efficiency of aquatic macrophytes to treat Nile tilapia pond effluents. Scientia Agricola, 63(5), 433-438

Tetracycline classes of antibiotic. Science of The Total Environment, 387(1–3), 247-256. doi: http://dx.doi.org/10.1016/j.scitotenv.2007.07.024

Tian, Y., Gao, B., Morales, V. L., Chen, H., Wang, Y., & Li, H. (2013). Removal of sulfamethoxazole and sulfapyridine by carbon nanotubes in fixed-bed columns. Chemosphere, 90(10), 2597-2605. doi: http://dx.doi.org/10.1016/j.chemosphere.2012.11.010

Tran, N. H., Li, J., Hu, J., & Ong, S. L. (2014). Occurrence and suitability of pharmaceuticals and personal care products as molecular markers for raw wastewater contamination in surface water and groundwater. Environmental Science and Pollution Research, 21(6), 4727-4740. doi: 10.1007/s11356-013-2428-9

Tran, Ngoc Han, Chen, Hongjie, Reinhard, Martin, Mao, Feijian, & Gin, Karina Yew-Hoong. (2016). Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Research, 104, 461-472. doi:http://dx.doi.org/10.1016/j.watres.2016.08.040

Urtiaga, A. M., Pérez, G., Ibáñez, R., & Ortiz, I. (2013). Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate. Desalination, 331, 26-34. doi: http://dx.doi.org/10.1016/j.desal.2013.10.010

Vergel Ortega, M., Martínez Lozano, J., & Zafra Tristancho, S. (2017). Cultivo de cebolla y su comportamiento en la provincia de Ocaña. Revista Colombiana de Ciencias Hortícolas, 10(2), 333-344. doi:https://doi.org/10.17584/rcch.2016v10i2.5070

Vidal, C. B., Seredych, M., Rodríguez-Castellón, E., Nascimento, R. F., & Bandosz, T. J. (2015). Effect of nanoporous carbon surface chemistry on the removal of endocrine disruptors from water phase. Journal of Colloid and Interface Science, 449, 180-191. doi: http://dx.doi.org/10.1016/j.jcis.2014.11.034

Wang, H., Yuan, X., Wu, Y., Zeng, G., Dong, H., Chen, X., . . . Peng, L. (2016). In situ synthesis of In2S3@MIL-125(Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 186, 19-29. doi: http://dx.doi.org/10.1016/j.apcatb.2015.12.041

Wang, T., Pan, X., Ben, W., Wang, J., Hou, P., & Qiang, Z. Adsorptive removal of antibiotics from water using magnetic ion exchange resin. Journal of Environmental Sciences. doi: http://dx.doi.org/10.1016/j.jes.2016.03.017

Wang, W., Li, X., Yuan, S., Sun, J., & Zheng, S. (2016). Effect of resin charged functional group, porosity, and chemical matrix on the long-term pharmaceutical removal mechanism by conventional ion exchange resins. Chemosphere, 160, 71-79. doi: http://dx.doi.org/10.1016/j.chemosphere.2016.06.073

Wang, Y., Zhang, Z., Jiang, C., & Xu, T. (2016). Recovery of gamma-aminobutyric acid (GABA) from reaction mixtures containing salt by electrodialysis. Separation and Purification Technology, 170, 353-359. doi: http://dx.doi.org/10.1016/j.seppur.2016.07.002

Weng, X.-D., Ji, Y.-L., Ma, R., Zhao, F.-Y., An, Q.-F., & Gao, C.-J. (2016). Superhydrophilic and antibacterial zwitterionic polyamide nanofiltration membranes for antibiotics separation. Journal of Membrane Science, 510, 122-130. doi: http://dx.doi.org/10.1016/j.memsci.2016.02.070

with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural

Wu, H., Niu, X., Yang, J., Wang, C., & Lu, M. (2016). Retentions of bisphenol A and norfloxacin by three different ultrafiltration membranes in regard to drinking water treatment. Chemical Engineering Journal, 294, 410-416. doi: http://dx.doi.org/10.1016/j.cej.2016.02.117

Xu, J., Xu, W., Wang, D., Sang, G., & Yang, X. (2016). Evaluation of enhanced coagulation coupled with magnetic ion exchange (MIEX) in natural organic matter and sulfamethoxazole removals: The role of Al-based coagulant characteristic. Separation and Purification Technology, 167, 70-78. doi: http://dx.doi.org/10.1016/j.seppur.2016.05.007

Xu, L., Sun, Y., Du, L., & Zhang, J. (2014). Removal of tetracycline hydrochloride from wastewater by nanofiltration enhanced by electro-catalytic oxidation. Desalination, 352, 58-65. doi: http://dx.doi.org/10.1016/j.desal.2014.08.013

Yahiat, S., Fourcade, F., Brosillon, S., & Amrane, A. (2011). Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment – Case of tetracycline and tylosin. International Biodeterioration & Biodegradation, 65(7), 997-1003. doi: http://dx.doi.org/10.1016/j.ibiod.2011.07.009

Yang, Z., Jia, S., Zhuo, N., Yang, W., & Wang, Y. (2015). Flocculation of copper(II) and tetracycline from water using a novel pH- and temperature-responsive flocculants. Chemosphere, 141, 112-119. doi: http://dx.doi.org/10.1016/j.chemosphere.2015.06.050

Yazdanbakhsh, A. R., Massoudinegad, M. R., Eliasi, S., & Mohammadi, A. S. (2015). The influence of operational parameters on reduce of azithromyin COD from wastewater using the peroxi -electrocoagulation process. Journal of Water Process Engineering, 6, 51-57. doi: http://dx.doi.org/10.1016/j.jwpe.2015.03.005

Zaidi, S., Chaabane, T., Sivasankar, V., Darchen, A., Maachi, R., & Msagati, T. A. M. Electro-coagulation coupled electro-flotation process: Feasible choice in doxycycline removal from pharmaceutical effluents. Arabian Journal of Chemistry. doi: http://dx.doi.org/10.1016/j.arabjc.2015.06.009

Zaidi, S., Chaabane, T., Sivasankar, V., Darchen, A., Maachi, R., Msagati, T. A. M., & Prabhakaran, M. (2016). Performance efficiency of electro-coagulation coupled electro-flotation process (EC-EF) versus adsorption process in doxycycline removal from aqueous solutions. Process Safety and Environmental Protection, 102, 450-461. doi: http://dx.doi.org/10.1016/j.psep.2016.04.013

Zaidi, S., Chaabane, T., Sivasankar, V., Darchen, A., Maachi, R., & Msagati, T. A. M. Electro-coagulation coupled electro-flotation process: Feasible choice in doxycycline removal from pharmaceutical effluents. Arabian Journal of Chemistry. doi: http://dx.doi.org/10.1016/j.arabjc.2015.06.009

Zhang, X., Guo, W., Ngo, H. H., Wen, H., Li, N., & Wu, W. (2016). Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water. Journal of Environmental Management, 172, 193-200. doi: http://dx.doi.org/10.1016/j.jenvman.2016.02.038




DOI: http://dx.doi.org/10.22335/rlct.v9i1.370

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2017 Revista Logos Ciencia & Tecnología

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.

Revista Científica indexada e indizada en:

                                   Resultado de imagen para erih plus logos               

 

 Emerging Sources Citation Index       SRG-Index


       

 


Backfiles en:

    SHERPA/RoMEO Logo 

     

 

 

     

 

 

ISSN de la revista (versión impresa) 2145-549X
ISSN de la revista (versión electrónica) 2422-4200



BY. Todos los contenidos de la Revista, a menos de que se indique lo contrario, están bajo la licencia de Creative Commons Attribution 

 

 

Revista Logos Ciencia & Tecnología
Policía Nacional de Colombia
Trv. 33 No. 47A - 35 Sur• Bogotá, D.C., Colombia

Código Postal: 110611-Código Postal Ampliado: 110611001

 

Teléfono: (57-1) 315 9000 Ext. 9854
Correo: rev_logoscienciatecnologia@correo.policia.gov.co

dinae.vicin@policia.gov.co


 

 

 

 

 

POLICÍA NACIONAL DE COLOMBIA
Carrera 59 Nº 26 - 21, CAN, Bogotá DC.
Atención administrativa de lunes a viernes de 8:00 am a 12:00 pm y de 2:00 pm a 5:00 pm - Requerimientos ciudadanos 24 horas
Línea de Atención al Ciudadano Bogotá: (571) 315 91 11 / 91 12 - Resto del país: 018000 910 600 FAX (571) 315 95 81 E -mail: lineadirecta@policia.gov.co
Centro de mediaciones Pedagógicas y Tecnológicas
Copyright © www.policia.gov.co - 2014